A355777 Partition triangle read by rows. A statistic of permutations given by their Lehmer code refining Euler's triangle A173018.
1, 1, 1, 1, 1, 4, 1, 1, 7, 4, 11, 1, 1, 11, 15, 32, 34, 26, 1, 1, 16, 26, 15, 76, 192, 34, 122, 180, 57, 1, 1, 22, 42, 56, 156, 474, 267, 294, 426, 1494, 496, 423, 768, 120, 1, 1, 29, 64, 98, 56, 288, 1038, 1344, 768, 855, 1206, 5142, 2829, 5946, 496, 2127, 9204, 4288, 1389, 2904, 247, 1
Offset: 0
Examples
The table T(n, k) begins: [0] 1; [1] 1; [2] 1, 1; [3] 1, 4, 1; [4] 1, [7, 4], 11, 1; [5] 1, [11, 15], [32, 34], 26, 1; [6] 1, [16, 26, 15], [76, 192, 34], [122, 180], 57, 1; [7] 1, [22, 42, 56], [156, 474, 267, 294], [426, 1494, 496], [423, 768], 120, 1; Summing the bracketed terms reduces the triangle to Euler's triangle A173018. . The Lehmer mapping of the permutations to the partitions, case n = 4, k = 1: 1243, 1324, 1423, 2134, 2341, 3124, 4123 map to the partition [3, 1] and 1342, 2143, 2314, 3412 map to the partition [2, 2]. Thus A173018(4, 1) = 7 + 4 = 11. . The cardinality of the preimage of the partitions, i.e. the number of permutations which map to the same partition, are the terms of the sequence. Here row 6: [6] => 1 [5, 1] => 16 [4, 2] => 26 [3, 3] => 15 [4, 1, 1] => 76 [3, 2, 1] => 192 [2, 2, 2] => 34 [3, 1, 1, 1] => 122 [2, 2, 1, 1] => 180 [2, 1, 1, 1, 1] => 57 [1, 1, 1, 1, 1, 1] => 1
Links
- Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker and Amanda Welch, Homomesies on permutations -- an analysis of maps and statistics in the FindStat database, arXiv:2206.13409 [math.CO], 2022. (Def. 4.20 and Prop. 4.22.)
- Florent Hivert, Jean-Christophe Novelli and Jean-Yves Thibon, Multivariate generalizations of the Foata-Schützenberger equidistribution, arXiv:math/0605060 [math.CO], 2006.
- Florent Hivert, Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition, Statistics Database St000275, 2015.
- Peter Luschny, Permutations with Lehmer, a SageMath Jupyter Notebook.
- Wikipedia, Lehmer code.
Crossrefs
Programs
-
SageMath
import collections @cached_function def eulerian_stat(n): res = collections.defaultdict(int) for p in Permutations(n): c = p.to_lehmer_code() l = [c.count(i) for i in range(len(p)) if i in c] res[Partition(reversed(sorted(l)))] += 1 return sorted(res.items(), key=lambda x: len(x[0])) @cached_function def A355777_row(n): return [v[1] for v in eulerian_stat(n)] def A355777(n, k): return A355777_row(n)[k] for n in range(8): print(A355777_row(n))
Comments