cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355815 a(n) = gcd(A276086(n), A277791(n)), where A276086 is primorial base exp-function and A277791 is the denominator of sum of reciprocals of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 7, 1, 1, 15, 1, 1, 1, 7, 25, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 35, 1, 1, 1, 1, 25, 1, 7, 1, 1, 1, 3, 1, 1, 7, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 49, 3, 5, 1, 1, 1, 1, 105
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Sequence contains only terms of A048103.
Cf. also A327858, A355003.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A277791(n) = denominator((sigma(n)-1)/n); \\ From A277791
    A355815(n) = gcd(A276086(n), A277791(n));
    
  • Python
    from math import gcd
    from sympy import nextprime, divisor_sigma
    def A355815(n):
        m, p, c = 1, 2, n
        while c:
            c, a = divmod(c,p)
            m *= p**a
            p = nextprime(p)
        return gcd(m,n//gcd(n, divisor_sigma(n)-1)) # Chai Wah Wu, Jul 18 2022

Formula

a(n) = gcd(A276086(n), A277791(n)).