A355819 Dirichlet inverse of A270419, denominator of the rational number obtained when the exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620).
1, -1, -1, 0, -1, 1, -1, -1, 0, 1, -1, 0, -1, 1, 1, 2, -1, 0, -1, 0, 1, 1, -1, 1, 0, 1, -2, 0, -1, -1, -1, -8, 1, 1, 1, 0, -1, 1, 1, 1, -1, -1, -1, 0, 0, 1, -1, -2, 0, 0, 1, 0, -1, 2, 1, 1, 1, 1, -1, 0, -1, 1, 0, 12, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1, -1, -2, 4, 1, -1, 0, 1, 1, 1, 1, -1, 0, 1, 0, 1, 1, 1, 8
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16383
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
PARI
A065620(n, c=1) = sum(i=0, logint(n+!n, 2), if(bittest(n, i), (-1)^c++<A065620 A270419(n) = {n=factor(n); n[, 2]=apply(A065620, n[, 2]); denominator(factorback(n)); }; \\ From A270419 memoA355819 = Map(); A355819(n) = if(1==n,1,my(v); if(mapisdefined(memoA355819,n,&v), v, v = -sumdiv(n,d,if(d
A270419(n/d)*A355819(d),0)); mapput(memoA355819,n,v); (v)));
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA270419(n/d) * a(d).
Comments