A355822 Numbers k such that A003961(k) and A276086(k) share a prime factor, where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.
2, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 92, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A355820(n) = (1==gcd(A003961(n), A276086(n))); isA355822(n) = !A355820(n);
-
Python
from math import prod, gcd from itertools import count, islice from sympy import nextprime, factorint def A355822_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue,1)): k = prod(nextprime(p)**e for p, e in factorint(n).items()) m, p, c = 1, 2, n while c: c, a = divmod(c,p) m *= p**a p = nextprime(p) if gcd(k,m) > 1: yield n A355822_list = list(islice(A355822_gen(),30)) # Chai Wah Wu, Jul 18 2022