cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355853 Primes in A333369.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97, 137, 139, 157, 173, 179, 193, 197, 223, 227, 229, 317, 359, 379, 397, 443, 449, 571, 593, 661, 719, 739, 751, 881, 883, 887, 937, 953, 971, 1009, 1117, 1151, 1171, 1223, 1229, 1447, 1511, 1579, 1597, 1663, 1667, 1669
Offset: 1

Views

Author

Bernard Schott, Jul 19 2022

Keywords

Examples

			443 is prime and 443 has two 4's and one 3 in its decimal expansion, hence 443 is a term.
		

Crossrefs

Intersection of A000040 and A333369.
Subsequence of A355773.
Supersequence of A155045.
Similar sequences: A002385, A004023.

Programs

  • Mathematica
    simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Prime[Range[300]], simQ] (* Amiram Eldar, Jul 19 2022 *)
  • PARI
    issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
    isok(m) = isprime(m) && issimber(m); \\ Michel Marcus, Jul 19 2022
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A355853_gen(startvalue=1): # generator of terms
        return filter(lambda n:not any((str(n).count(d)^int(d))&1 for d in set(str(n))) and isprime(n),count(max(startvalue,1)))
    A355853_list = list(islice(A355853_gen(),30)) # Chai Wah Wu, Jul 21 2022

Extensions

Extended by Michel Marcus, Jul 19 2022