A355853 Primes in A333369.
3, 5, 7, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97, 137, 139, 157, 173, 179, 193, 197, 223, 227, 229, 317, 359, 379, 397, 443, 449, 571, 593, 661, 719, 739, 751, 881, 883, 887, 937, 953, 971, 1009, 1117, 1151, 1171, 1223, 1229, 1447, 1511, 1579, 1597, 1663, 1667, 1669
Offset: 1
Examples
443 is prime and 443 has two 4's and one 3 in its decimal expansion, hence 443 is a term.
Crossrefs
Programs
-
Mathematica
simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Prime[Range[300]], simQ] (* Amiram Eldar, Jul 19 2022 *)
-
PARI
issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369 isok(m) = isprime(m) && issimber(m); \\ Michel Marcus, Jul 19 2022
-
Python
from itertools import count, islice from sympy import isprime def A355853_gen(startvalue=1): # generator of terms return filter(lambda n:not any((str(n).count(d)^int(d))&1 for d in set(str(n))) and isprime(n),count(max(startvalue,1))) A355853_list = list(islice(A355853_gen(),30)) # Chai Wah Wu, Jul 21 2022
Extensions
Extended by Michel Marcus, Jul 19 2022