A355856 Primes, with at least one prime digit, that remain primes when all of their prime digits are removed.
113, 131, 139, 151, 179, 193, 197, 211, 241, 311, 389, 421, 431, 541, 613, 617, 631, 719, 761, 829, 839, 859, 1013, 1021, 1031, 1039, 1051, 1093, 1097, 1123, 1153, 1201, 1213, 1217, 1229, 1231, 1249, 1259, 1279, 1291, 1297, 1301, 1321, 1381, 1399, 1429, 1439, 1459, 1493, 1531, 1549
Offset: 1
Examples
The prime 179 is a term because when its prime digit 7 is removed, it remains 19, which is still a prime. The prime 136457911 is a term because when all of its prime digits, 3, 5, and 7 are removed, it remains 164911, which is still a prime.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
MATLAB
function a = A355856( max_prime ) a = []; p = primes( max_prime ); for n = 1:length(p) s = num2str(p(n)); s = strrep(s,'2',''); s = strrep(s,'3',''); s = strrep(s,'5',''); s = strrep(s,'7',''); m = str2double(s); if m > 1 if isprime(m) && m ~= p(n) a = [a p(n)]; end end end end % Thomas Scheuerle, Jul 19 2022
-
Mathematica
q[n_] := (r = FromDigits[Select[IntegerDigits[n], ! PrimeQ[#] &]]) != n && PrimeQ[r]; Select[Prime[Range[250]], q] (* Amiram Eldar, Jul 19 2022 *)
-
PARI
isok(p) = if (isprime(p), my(d=digits(p), v=select(x->(!isprime(x)), d)); (#v != #d) && isprime(fromdigits(v));) \\ Michel Marcus, Jul 19 2022
-
Python
from sympy import isprime def ok(n): s = str(n) if n < 10 or set(s) & set("2357") == set(): return False sd = s.translate({ord(c): None for c in "2357"}) return len(sd) and isprime(int(sd)) and isprime(n) print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Jul 23 2022
Comments