cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355856 Primes, with at least one prime digit, that remain primes when all of their prime digits are removed.

Original entry on oeis.org

113, 131, 139, 151, 179, 193, 197, 211, 241, 311, 389, 421, 431, 541, 613, 617, 631, 719, 761, 829, 839, 859, 1013, 1021, 1031, 1039, 1051, 1093, 1097, 1123, 1153, 1201, 1213, 1217, 1229, 1231, 1249, 1259, 1279, 1291, 1297, 1301, 1321, 1381, 1399, 1429, 1439, 1459, 1493, 1531, 1549
Offset: 1

Views

Author

Tamas Sandor Nagy, Jul 19 2022

Keywords

Comments

Terms of A034844 that only have nonprime digits are not terms here. - Michel Marcus, Jul 19 2022

Examples

			The prime 179 is a term because when its prime digit 7 is removed, it remains 19, which is still a prime.
The prime 136457911 is a term because when all of its prime digits, 3, 5, and 7 are removed, it remains 164911, which is still a prime.
		

Crossrefs

Programs

  • MATLAB
    function a = A355856( max_prime )
        a = []; p = primes( max_prime );
        for n = 1:length(p)
            s = num2str(p(n));
            s = strrep(s,'2',''); s = strrep(s,'3','');
            s = strrep(s,'5',''); s = strrep(s,'7','');
            m = str2double(s);
            if m > 1
                if isprime(m) && m ~= p(n)
                    a = [a p(n)];
                end
            end
        end
    end % Thomas Scheuerle, Jul 19 2022
    
  • Mathematica
    q[n_] := (r = FromDigits[Select[IntegerDigits[n], ! PrimeQ[#] &]]) != n && PrimeQ[r]; Select[Prime[Range[250]], q] (* Amiram Eldar, Jul 19 2022 *)
  • PARI
    isok(p) = if (isprime(p), my(d=digits(p), v=select(x->(!isprime(x)), d)); (#v != #d) && isprime(fromdigits(v));) \\ Michel Marcus, Jul 19 2022
    
  • Python
    from sympy import isprime
    def ok(n):
        s = str(n)
        if n < 10 or set(s) & set("2357") == set(): return False
        sd = s.translate({ord(c): None for c in "2357"})
        return len(sd) and isprime(int(sd)) and isprime(n)
    print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Jul 23 2022