A355881 Table read by descending antidiagonals: T(k,n) (k >= 0, n>= 1) is number of ways to (k+2)-color a 3 X n grid ignoring the variations of two colors.
1, 1, 2, 1, 9, 3, 1, 41, 49, 4, 1, 187, 801, 169, 5, 1, 853, 13095, 7141, 441, 6, 1, 3891, 214083, 301741, 38897, 961, 7, 1, 17749, 3499929, 12749989, 3430789, 153921, 1849, 8, 1, 80963, 57218481, 538747549, 302602093, 24653151, 488401, 3249, 9
Offset: 0
Examples
Table begins: k\n_1____2______3_________4___________5_____________6________________7 0: 1 1 1 1 1 1 1 1: 2 9 41 187 853 3891 17749 2: 3 49 801 13095 214083 3499929 57218481 3: 4 169 7141 301741 12749989 538747549 22764640981 4: 5 441 38897 3430789 302602093 26690078241 2354115497017 5: 6 961 153921 24653151 3948635061 632443246191 101296892084301 6: 7 1849 488401 129007867 34076567743 9001098120361 2377580042199049
Links
- Gerhard Kirchner, Derivation of the recurrence
Formula
T(k,n) = k*(k^2 + k + 3) * T(k,n-1) - (k^4 + k^3 + k^2-1) * T(k,n-2)
with T(k,1) = k+1, T(k,2) = (k^2+k+1)^2.
G.f.: x*(k + 1 - (k^2 + k - 1)*x) / (1 - k*(k^2 + k + 3)*x + (k^4 + k^3 + k^2 - 1)*x^2).
Comments