cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355882 Number of ways to 4-color a 3 X n grid ignoring the variations of two colors.

Original entry on oeis.org

3, 49, 801, 13095, 214083, 3499929, 57218481, 935434575, 15292923363, 250015887009, 4087377035361, 66822357687255, 1092443258415843, 17859774993929289, 291979981913499441, 4773425749606899135, 78038203981259699523, 1275805176423288314769
Offset: 1

Views

Author

Gerhard Kirchner, Jul 24 2022

Keywords

Comments

See A355881 for a general formula.

Examples

			a(1) = 3, 4 colors 1,2,3,4: 121, 123, 124.
The first two colors do not vary.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{18, -27}, {3, 49}, 20] (* Paolo Xausa, Oct 03 2024 *)

Formula

G.f.: x*(3-5*x)/(1-18*x+27*x^2).
a(n) = 18*a(n-1) - 27*a(n-2) with a(1) = 3, a(2) = 49.
a(n) = 3^(n-7/2)*((12 + 5*sqrt(6))*(3 + sqrt(6))^n - (3 - sqrt(6))^n*(12 - 5*sqrt(6)))/(2*sqrt(2)). - Stefano Spezia, Jul 24 2022
a(n) = 2*A198710(n) - 1. - Hugo Pfoertner, Jul 24 2022

A355883 Number of ways to 5-color a 3 X n grid ignoring the variations of two colors.

Original entry on oeis.org

4, 169, 7141, 301741, 12749989, 538747549, 22764640981, 961914128461, 40645437426949, 1717462645311229, 72570948297479221, 3066467006530462381, 129572785291363217509, 5475065165353811151709, 231347489347123368595861, 9775529461439509493215501
Offset: 1

Views

Author

Gerhard Kirchner, Jul 24 2022

Keywords

Comments

See A355881 for a general formula.

Examples

			a(1) = 4, 5 colors 1,2,3,4,5: 121, 123, 124, 125.
The first two colors do not vary.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{45, -116}, {4, 169}, 20] (* Paolo Xausa, Oct 03 2024 *)

Formula

a(n) = A222139(n)/4.
G.f.: x*(4-11*x)/(1-45*x+116*x^2).
a(n) = 45*a(n-1) - 116*a(n-2) with a(1) = 4, a(2) = 169.
a(n) = 2^(-3-n)*((45 - sqrt(1561))^n*(11*sqrt(1561) - 433) + (45 + sqrt(1561))^n*(11*sqrt(1561) + 433))/(29*sqrt(1561)). - Stefano Spezia, Jul 24 2022
Showing 1-2 of 2 results.