A355885 a(n) is the smallest odd k such that k + 2^m is a de Polignac number for m = 1..n.
125, 903, 7385, 87453, 957453, 6777393, 21487809, 27035379, 1379985537, 5458529139, 15399643917, 32702289081
Offset: 1
Examples
a(3) = 7385, because 7385 is the smallest number k such that k+2^1, k+2^2, k+2^3 are de Polignac numbers 7387, 7389, 7393.
Programs
-
Mathematica
depolQ[n_] := OddQ[n] && Module[{m = 2}, While[m < n && CompositeQ[n - m], m *= 2]; m > n]; a[n_] := Module[{k = 1}, While[AnyTrue[Range[1, n], !depolQ[k + 2^#] &], k++]; k]; Array[a, 5] (* Amiram Eldar, Jul 20 2022 *)
Extensions
More terms from Amiram Eldar, Jul 20 2022
Comments