cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355893 Let A090252(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A090252(n); a(1)=0 by convention.

Original entry on oeis.org

0, 1, 10, 100, 2, 1000, 20, 10000, 100000, 1000000, 3, 10000000, 100000000, 200, 1010, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 4, 10000000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2022

Keywords

Comments

A090252 and A354169 are similar in many ways. This sequence and A355892 illustrate this.
This compressed format only make sense if all e_i are less than 10, that is, for n <= 24574.
It is believed that 6 does not appear in A090252, so 11 is missing from the present sequence.

Examples

			The initial terms of A090252 are:
1 -> 0
2 = 2^1 ->1
3 = 2^0 3^1 -> 10
5 = 2^0 3^0 5^1 -> 100
4 = 2^2 -> 2
7 = 2^0 3^0 5^0 7^1 -> 1000
9 = 2^0 3^2 -> 20
...
The terms, right-justified, for comparison with A355892, are:
.1 ...................................0
.2 ...................................1
.3 ..................................10
.4 .................................100
.5 ...................................2
.6 ................................1000
.7 ..................................20
.8 ...............................10000
.9 ..............................100000
10 .............................1000000
11 ...................................3
12 ............................10000000
13 ...........................100000000
14 .................................200
15 ................................1010
16 ..........................1000000000
17 .........................10000000000
18 ........................100000000000
19 .......................1000000000000
20 ......................10000000000000
21 .....................100000000000000
22 ....................1000000000000000
23 ...................................4
24 ...................10000000000000000
...
		

Crossrefs

See A354150 for indices of powers of 2 in A090252.

Programs

  • Mathematica
    nn = 24, s = Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; nn, -1]]; f[n_] := If[n == 1, 0, Function[g, FromDigits@ Reverse@ ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ n]; Array[f[s[[#]]] &, nn] (* Michael De Vlieger, Aug 24 2022 *)

Formula

a(n) = A054841(A090252(n)). - Stefano Spezia, Aug 24 2022

A355894 Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.

Original entry on oeis.org

0, 1, 10, 100, 1000, 10000, 11, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 1100, 10001, 100000000000, 100010, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 25 2022

Keywords

Comments

The terms of A354790 are squarefree, so here the exponents e_i are 0 or 1.
This bears the same relation to A354790 as A355893 does to A090252.

Examples

			The terms, right-justified, for comparison with A355892 and A355893, are:
   1 ...................................0
   2 ...................................1
   3 ..................................10
   4 .................................100
   5 ................................1000
   6 ...............................10000
   7 ..................................11
   8 ..............................100000
   9 .............................1000000
  10 ............................10000000
  11 ...........................100000000
  12 ..........................1000000000
  13 .........................10000000000
  14 ................................1100
  15 ...............................10001
  16 ........................100000000000
  17 ..............................100010
  18 .......................1000000000000
  19 ......................10000000000000
  20 .....................100000000000000
  21 ....................1000000000000000
  22 ...................10000000000000000
  23 ..................100000000000000000
  24 .................1000000000000000000
  ...
		

Crossrefs

Showing 1-2 of 2 results.