cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A231132 Decimal expansion of sum_(n=2..infinity) (-1)^n*zeta(n)/n^2.

Original entry on oeis.org

3, 2, 0, 3, 4, 1, 1, 4, 2, 5, 1, 2, 7, 9, 3, 8, 3, 6, 2, 7, 2, 5, 6, 1, 0, 9, 3, 2, 1, 1, 7, 7, 8, 7, 1, 8, 7, 5, 3, 2, 1, 1, 4, 7, 9, 8, 7, 6, 2, 0, 3, 2, 3, 8, 5, 2, 0, 8, 9, 6, 9, 3, 1, 3, 3, 5, 7, 1, 3, 3, 4, 8, 6, 8, 0, 4, 0, 7, 3, 2, 2, 0, 1, 6, 9, 3, 0, 4, 6, 3, 1, 9, 2, 1, 2, 0, 8, 8, 0, 3
Offset: 0

Views

Author

Jean-François Alcover, Nov 04 2013

Keywords

Comments

Let f(k) = sum_(n=2..infinity) (-1)^n*zeta(n)/n^k, then Euler gamma is f(1) and this constant is f(2).

Examples

			0.32034114251279383627256109321177871875321147987620323852089693133571334868...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ EulerGamma + Integrate[ LogGamma[x+1]/x, {x, 0, 1}] // N[#, 100]&, 10, 100] // First
  • PARI
    sumalt(k=2,(-1)^k*zeta(k)/k^2) \\ Vaclav Kotesovec, Sep 23 2023

A355922 Decimal expansion of Sum_{k>=2} (1/k)*arctanh(1/k).

Original entry on oeis.org

6, 7, 6, 5, 6, 5, 1, 3, 6, 1, 4, 7, 9, 6, 6, 6, 4, 0, 8, 2, 6, 4, 7, 2, 0, 1, 6, 2, 4, 6, 1, 2, 9, 8, 1, 3, 4, 5, 4, 3, 9, 5, 2, 1, 2, 1, 8, 5, 9, 5, 5, 6, 3, 2, 3, 0, 6, 0, 0, 8, 6, 1, 3, 1, 6, 5, 4, 6, 8, 5, 0, 8, 2, 4, 3, 6, 7, 5, 9, 2, 1, 1, 1, 9, 8, 2, 1
Offset: 0

Views

Author

Amiram Eldar, Jul 21 2022

Keywords

Examples

			0.67656513614796664082647201...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[ArcTanh[1/k]/k, {k, 2, Infinity}], 30], 10, 26][[1]] (* Amiram Eldar, Jul 21 2022 *)

Formula

Equals Sum_{k>=2} arccoth(k)/k.
Equals Sum_{k>=1} (zeta(2*k)-1)/(2*k-1).
Equals log(Product_{k>=2} ((k+1)/(k-1))^(1/(2*k))).

Extensions

More terms from Jinyuan Wang, Jul 21 2022
Showing 1-2 of 2 results.