A355947 a(n) = Sum_{k=1..n} (n+1-k)*floor(n/k).
0, 1, 5, 12, 25, 39, 65, 87, 124, 161, 210, 249, 328, 377, 450, 531, 630, 698, 825, 903, 1047, 1169, 1295, 1393, 1609, 1740, 1893, 2056, 2269, 2400, 2679, 2822, 3070, 3277, 3486, 3709, 4082, 4260, 4498, 4748, 5136, 5336, 5744, 5956, 6312, 6686, 6984, 7218, 7772
Offset: 0
Examples
For n=5, the sum is formed: k = 1..n: 1 2 3 4 5 floor(n/k): 5 2 1 1 1 n+1-k = n..1: 5 4 3 2 1 floor(n/k)*(n+1-k): 25 8 3 2 1 __________________ a(5) = 25 + 8 + 3 + 2 + 1 = 39
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a[n_] := Sum[(n+1-k) * Floor[n/k], {k, 1, n}]; Array[a, 50, 0] (* Amiram Eldar, Jul 22 2022 *)
-
PARI
a(n) = sum(k=1, n, (n+1-k)*floor(n/k)) \\ Rémy Sigrist, Jul 21 2022
-
PARI
my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k*(k-(k-1)*x-x^k)/(1-x^k)^2)/(1-x)^2)) \\ Seiichi Manyama, Jul 24 2022
-
Python
from math import isqrt def A355947(n): return (s:=isqrt(n))**2*(s-(n<<1)-1)+sum((q:=n//k)*((n<<2)-(k<<1)-q+3) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 24 2023
Formula
From Vaclav Kotesovec, Jul 23 2022: (Start)
a(n) ~ n*(n+1)*(log(n) + 2*gamma - 1) - n^2*Pi^2/12, where gamma is the Euler-Mascheroni constant A001620. (End)
(1/(1-x)^2) * Sum_{k>0} x^k * (k - (k-1)*x - x^k)/(1-x^k)^2. - Seiichi Manyama, Jul 24 2022
Extensions
More terms from Rémy Sigrist, Jul 21 2022
Comments