cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355996 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) = n!/(k! * floor(n/k)!).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 30, 20, 5, 1, 1, 60, 60, 30, 6, 1, 1, 420, 420, 210, 42, 7, 1, 1, 840, 3360, 840, 336, 56, 8, 1, 1, 7560, 10080, 7560, 3024, 504, 72, 9, 1, 1, 15120, 100800, 75600, 15120, 5040, 720, 90, 10, 1, 1, 166320, 1108800, 831600, 166320, 55440, 7920, 990, 110, 11, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   6,    4,   1;
  1,  30,   20,   5,   1;
  1,  60,   60,  30,   6,  1;
  1, 420,  420, 210,  42,  7, 1;
  1, 840, 3360, 840, 336, 56, 8, 1;
  ...
		

Crossrefs

Row sums give A355991.
Column k=1..3 give A000012, A355989, A355990.

Programs

  • Mathematica
    T[n_, k_] := n!/(k!*Floor[n/k]!); Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    T(n, k) = n!/(k!*(n\k)!);

Formula

E.g.f. of column k: (1 - x^k) * (exp(x^k) - 1)/(k! * (1 - x)).