cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357335 E.g.f. satisfies A(x) = (exp(x) - 1) * exp(2 * A(x)).

Original entry on oeis.org

0, 1, 5, 49, 757, 16081, 435477, 14345297, 556857973, 24894290257, 1259621627349, 71165987957329, 4440821632449077, 303338709537825105, 22512353926895739797, 1803812930088064925265, 155195078834104237961717, 14270228623788585753803089
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(2*(1-exp(x)))/2)))
    
  • PARI
    a(n) = sum(k=1, n, (2*k)^(k-1)*stirling(n, k, 2));

Formula

E.g.f.: -LambertW(2 * (1 - exp(x)))/2.
a(n) = Sum_{k=1..n} (2 * k)^(k-1) * Stirling2(n,k).
a(n) ~ sqrt(1 + 2*exp(1)) * n^(n-1) / (2 * exp(n) * log(1 + exp(-1)/2)^(n - 1/2)). - Vaclav Kotesovec, Nov 14 2022
E.g.f.: Series_Reversion( log(1 + x * exp(-2*x)) ). - Seiichi Manyama, Sep 09 2024

A356001 Expansion of e.g.f. -LambertW((1 - exp(3*x))/3).

Original entry on oeis.org

0, 1, 5, 36, 379, 5461, 100476, 2250613, 59432141, 1807959042, 62262816157, 2394551966401, 101724440338494, 4730814590128615, 239057921691911861, 13042779411190737420, 764136645388807739239, 47846833035272035228849, 3188740106752561252031364
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[(1 - Exp[3*x])/3], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw((1-exp(3*x))/3))))
    
  • PARI
    a(n) = sum(k=1, n, 3^(n-k)*k^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} 3^(n-k) * k^(k-1) * Stirling2(n,k).
a(n) ~ 3^(n - 1/2) * sqrt(exp(1) + 3) * n^(n-1) / (exp(n) * (log(exp(1) + 3) - 1)^(n - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( (log(1 + 3 * x * exp(-x)))/3 ). - Seiichi Manyama, Sep 11 2024
Showing 1-2 of 2 results.