cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357336 E.g.f. satisfies A(x) = (exp(x) - 1) * exp(3 * A(x)).

Original entry on oeis.org

0, 1, 7, 100, 2257, 70021, 2768740, 133164109, 7546722487, 492531820066, 36381833190223, 3000677194970137, 273342303933512362, 27256107730344331879, 2952882035628632383975, 345384835617231362018764, 43378466647737203462409829, 5822506028894124326533926193
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(3*(1-exp(x)))/3)))
    
  • PARI
    a(n) = sum(k=1, n, (3*k)^(k-1)*stirling(n, k, 2));

Formula

E.g.f.: -LambertW(3 * (1 - exp(x)))/3.
a(n) = Sum_{k=1..n} (3 * k)^(k-1) * Stirling2(n,k).
a(n) ~ sqrt(1 + 3*exp(1)) * n^(n-1) / (3 * exp(n) * log(1 + exp(-1)/3)^(n - 1/2)). - Vaclav Kotesovec, Nov 14 2022
E.g.f.: Series_Reversion( log(1 + x * exp(-3*x)) ). - Seiichi Manyama, Sep 09 2024

A356000 Expansion of e.g.f. -LambertW((1 - exp(2*x))/2).

Original entry on oeis.org

0, 1, 4, 25, 236, 3061, 50670, 1020881, 24245576, 663290281, 20541118266, 710366714773, 27135242829436, 1134708855427629, 51556563327940390, 2529164265815033241, 133229047747850647312, 7500633471737652798673, 449445732625670948076530
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[(1 - Exp[2*x])/2], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw((1-exp(2*x))/2))))
    
  • PARI
    a(n) = sum(k=1, n, 2^(n-k)*k^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} 2^(n-k) * k^(k-1) * Stirling2(n,k).
a(n) ~ 2^(n - 1/2) * sqrt(exp(1) + 2) * n^(n-1) / (exp(n) * (log(exp(1) + 2) - 1)^(n - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( (log(1 + 2 * x * exp(-x)))/2 ). - Seiichi Manyama, Sep 11 2024
Showing 1-2 of 2 results.