cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356045 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} sigma_k(j) * floor(n/j).

Original entry on oeis.org

1, 1, 4, 1, 5, 7, 1, 7, 10, 13, 1, 11, 18, 21, 16, 1, 19, 40, 45, 28, 25, 1, 35, 102, 123, 72, 48, 28, 1, 67, 280, 393, 250, 138, 57, 38, 1, 131, 798, 1371, 1020, 540, 189, 83, 44, 1, 259, 2320, 5025, 4498, 2514, 885, 301, 101, 53, 1, 515, 6822, 18963, 20652, 12828, 4917, 1553, 403, 129, 56
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,    1,     1, ...
   4,  5,   7,  11,   19,    35, ...
   7, 10,  18,  40,  102,   280, ...
  13, 21,  45, 123,  393,  1371, ...
  16, 28,  72, 250, 1020,  4498, ...
  25, 48, 138, 540, 2514, 12828, ...
		

Crossrefs

Columns k=0..3 give A061201, A280077, A356042, A356043.
T(n,n) gives A356046.
Cf. A322103.

Programs

  • PARI
    T(n, k) = sum(j=1, n, sigma(j, k)*(n\j));
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, d^k*numdiv(j/d)));
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, sigma(d, k)));

Formula

G.f. of column k: (1/(1-x)) * Sum_{j>=1} sigma_k(j) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k * tau(j/d).
T(n,k) = Sum_{j=1..n} Sum_{d|j} sigma_k(d).

A356126 a(n) = Sum_{k=1..n} k * sigma_3(k).

Original entry on oeis.org

1, 19, 103, 395, 1025, 2537, 4945, 9625, 16438, 27778, 42430, 66958, 95532, 138876, 191796, 266692, 350230, 472864, 603204, 787164, 989436, 1253172, 1533036, 1926156, 2319931, 2834263, 3386143, 4089279, 4796589, 5749149, 6672701, 7871069, 9101837, 10605521
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Partial sums of A281372.
Column k=4 of A356124.
Cf. A356043.

Programs

  • Mathematica
    a[n_] := Sum[k * DivisorSigma[3, k], {k, 1, n}]; Array[a, 34] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, k*sigma(k, 3));
    
  • PARI
    a(n) = sum(k=1, n, k^4*binomial(n\k+1, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k^4*x^k/(1-x^k)^2)/(1-x))
    
  • Python
    from math import isqrt
    def A356126(n): return ((-(s:=isqrt(n))**2*(s+1)**2*((s<<1)+1)*(s*(3*(s+1))-1)>>1)+sum(k*(q:=n//k)*(q+1)*(15*k**3+((q<<1)+1)*(q*(3*(q+1))-1)) for k in range(1,s+1)))//30 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k^4 * binomial(floor(n/k)+1,2).
G.f.: (1/(1-x)) * Sum_{k>=1} k^4 * x^k/(1 - x^k)^2.
Showing 1-2 of 2 results.