cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A356046 a(n) = Sum_{k=1..n} sigma_n(k) * floor(n/k).

Original entry on oeis.org

1, 7, 40, 393, 4498, 68898, 1205205, 24830617, 574911611, 14936215765, 427782762142, 13426870089265, 457622727372932, 16842615801316402, 665489035541044561, 28102162770144986248, 1262904298391426474369, 60182778141796948356895
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, sigma(k, n)*(n\k));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^n*numdiv(k/d)));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, sigma(d, n)));

Formula

a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} sigma_n(k) * x^k/(1 - x^k).
a(n) = Sum_{k=1..n} Sum_{d|k} d^n * tau(k/d).
a(n) = Sum_{k=1..n} Sum_{d|k} sigma_n(d).
a(n) ~ c * n^n, where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Aug 07 2022

A322103 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} sigma_k(d).

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 1, 6, 5, 6, 1, 10, 11, 11, 3, 1, 18, 29, 27, 7, 9, 1, 34, 83, 83, 27, 20, 3, 1, 66, 245, 291, 127, 66, 9, 10, 1, 130, 731, 1091, 627, 290, 51, 26, 6, 1, 258, 2189, 4227, 3127, 1494, 345, 112, 18, 9, 1, 514, 6563, 16643, 15627, 8330, 2403, 668, 102, 28, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,     1,     1,  ...
  3,   4,   6,   10,    18,    34,  ...
  3,   5,  11,   29,    83,   245,  ...
  6,  11,  27,   83,   291,  1091,  ...
  3,   7,  27,  127,   627,  3127,  ...
  9,  20,  66,  290,  1494,  8330,  ...
		

Crossrefs

Columns k=0..3 give A007425, A007429, A007433, A321140.
Cf. A109974, A321141 (diagonal), A356045.

Programs

  • Mathematica
    Table[Function[k, Sum[DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, d^k*numdiv(n/d))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} sigma_k(j)*x^j/(1 - x^j).
A(n,k) = Sum_{d|n} d^k*tau(n/d).

A356042 a(n) = Sum_{k=1..n} sigma_2(k) * floor(n/k).

Original entry on oeis.org

1, 7, 18, 45, 72, 138, 189, 301, 403, 565, 688, 985, 1156, 1462, 1759, 2212, 2503, 3115, 3478, 4207, 4768, 5506, 6037, 7269, 7947, 8973, 9895, 11272, 12115, 13897, 14860, 16678, 18031, 19777, 21154, 23908, 25279, 27457, 29338, 32362, 34045, 37411, 39262, 42583
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Crossrefs

Partial sums of A007433.
Column k=2 of A356045.
Cf. A000005 (tau).

Programs

  • Mathematica
    Table[Sum[DivisorSigma[2, k]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 07 2022 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, 2)*(n\k));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^2*numdiv(k/d)));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, 2)*x^k/(1-x^k))/(1-x))

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^2 * tau(k/d).
G.f.: (1/(1-x)) * Sum_{k>=1} sigma_2(k) * x^k/(1 - x^k).
a(n) ~ zeta(3)^2 * n^3 / 3. - Vaclav Kotesovec, Aug 07 2022

A356043 a(n) = Sum_{k=1..n} sigma_3(k) * floor(n/k).

Original entry on oeis.org

1, 11, 40, 123, 250, 540, 885, 1553, 2339, 3609, 4942, 7349, 9548, 12998, 16681, 22030, 26945, 34805, 41666, 52207, 62212, 75542, 87711, 107083, 122961, 144951, 166177, 194812, 219203, 256033, 285826, 328624, 367281, 416431, 460246, 525484, 576139, 644749, 708520
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Crossrefs

Partial sums of A321140.
Column k=3 of A356045.
Cf. A000005 (tau).

Programs

  • Mathematica
    Table[Sum[DivisorSigma[3, k]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 07 2022 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, 3)*(n\k));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^3*numdiv(k/d)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, 3)*x^k/(1-x^k))/(1-x))

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^3 * tau(k/d).
G.f.: (1/(1-x)) * Sum_{k>=1} sigma_3(k) * x^k/(1 - x^k).
a(n) ~ Pi^8 * n^4 / 32400. - Vaclav Kotesovec, Aug 07 2022
Showing 1-4 of 4 results.