A356045 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} sigma_k(j) * floor(n/j).
1, 1, 4, 1, 5, 7, 1, 7, 10, 13, 1, 11, 18, 21, 16, 1, 19, 40, 45, 28, 25, 1, 35, 102, 123, 72, 48, 28, 1, 67, 280, 393, 250, 138, 57, 38, 1, 131, 798, 1371, 1020, 540, 189, 83, 44, 1, 259, 2320, 5025, 4498, 2514, 885, 301, 101, 53, 1, 515, 6822, 18963, 20652, 12828, 4917, 1553, 403, 129, 56
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 4, 5, 7, 11, 19, 35, ... 7, 10, 18, 40, 102, 280, ... 13, 21, 45, 123, 393, 1371, ... 16, 28, 72, 250, 1020, 4498, ... 25, 48, 138, 540, 2514, 12828, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
PARI
T(n, k) = sum(j=1, n, sigma(j, k)*(n\j));
-
PARI
T(n, k) = sum(j=1, n, sumdiv(j, d, d^k*numdiv(j/d)));
-
PARI
T(n, k) = sum(j=1, n, sumdiv(j, d, sigma(d, k)));
Formula
G.f. of column k: (1/(1-x)) * Sum_{j>=1} sigma_k(j) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k * tau(j/d).
T(n,k) = Sum_{j=1..n} Sum_{d|j} sigma_k(d).