cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A356045 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} sigma_k(j) * floor(n/j).

Original entry on oeis.org

1, 1, 4, 1, 5, 7, 1, 7, 10, 13, 1, 11, 18, 21, 16, 1, 19, 40, 45, 28, 25, 1, 35, 102, 123, 72, 48, 28, 1, 67, 280, 393, 250, 138, 57, 38, 1, 131, 798, 1371, 1020, 540, 189, 83, 44, 1, 259, 2320, 5025, 4498, 2514, 885, 301, 101, 53, 1, 515, 6822, 18963, 20652, 12828, 4917, 1553, 403, 129, 56
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,    1,     1, ...
   4,  5,   7,  11,   19,    35, ...
   7, 10,  18,  40,  102,   280, ...
  13, 21,  45, 123,  393,  1371, ...
  16, 28,  72, 250, 1020,  4498, ...
  25, 48, 138, 540, 2514, 12828, ...
		

Crossrefs

Columns k=0..3 give A061201, A280077, A356042, A356043.
T(n,n) gives A356046.
Cf. A322103.

Programs

  • PARI
    T(n, k) = sum(j=1, n, sigma(j, k)*(n\j));
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, d^k*numdiv(j/d)));
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, sigma(d, k)));

Formula

G.f. of column k: (1/(1-x)) * Sum_{j>=1} sigma_k(j) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k * tau(j/d).
T(n,k) = Sum_{j=1..n} Sum_{d|j} sigma_k(d).

A356128 a(n) = Sum_{k=1..n} k * sigma_n(k).

Original entry on oeis.org

1, 11, 103, 1373, 20657, 381795, 7921825, 187452793, 4916743582, 142471278944, 4506381463150, 154747691135574, 5729252807696052, 227595085199164036, 9654855890695727316, 435664037303036699736, 20836069678062430493950, 1052867409176853099312712
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k * DivisorSigma[n, k], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, k*sigma(k, n));
    
  • PARI
    a(n) = sum(k=1, n, k^(n+1)*binomial(n\k+1, 2));
    
  • Python
    from math import isqrt
    from sympy import bernoulli
    def A356128(n): return ((s:=isqrt(n))*(s+1)*(bernoulli(n+2)-bernoulli(n+2,s+1))+sum(k**(n+1)*(n+2)*(q:=n//k)*(q+1)+(k*(bernoulli(n+2,q+1)-bernoulli(n+2))<<1) for k in range(1,s+1)))//(n+2)>>1 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k^(n+1) * binomial(floor(n/k)+1,2).
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} k^(n+1) * x^k/(1 - x^k)^2.

A356076 a(n) = Sum_{k=1..n} sigma_k(k) * floor(n/k).

Original entry on oeis.org

1, 7, 36, 315, 3442, 50926, 874471, 17717759, 405157961, 10414927743, 295726598356, 9214021189459, 312089127781714, 11424774177252514, 449318695090042077, 18896344248088180470, 846136606134424944649, 40192694877626991357901
Offset: 1

Views

Author

Seiichi Manyama, Jul 25 2022

Keywords

Crossrefs

Partial sums of A344434.

Programs

  • Mathematica
    Table[Sum[DivisorSigma[k,k]Floor[n/k],{k,n}],{n,20}] (* Harvey P. Dale, Sep 08 2024 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, k)*(n\k));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, sigma(d, d)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k))/(1-x))
    
  • Python
    from sympy import divisor_sigma
    def A356079(n): return n+sum(divisor_sigma(k,k)*(n//k) for k in range(2,n+1)) # Chai Wah Wu, Jul 25 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} sigma_d(d).
G.f.: (1/(1-x)) * Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k).
a(n) ~ n^n. - Vaclav Kotesovec, Aug 07 2022
Showing 1-3 of 3 results.