cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356125 a(n) = Sum_{k=1..n} k * sigma_2(k).

Original entry on oeis.org

1, 11, 41, 125, 255, 555, 905, 1585, 2404, 3704, 5046, 7566, 9776, 13276, 17176, 22632, 27562, 35752, 42630, 53550, 64050, 77470, 89660, 110060, 126335, 148435, 170575, 199975, 224393, 263393, 293215, 336895, 377155, 426455, 471955, 540751, 591441, 660221, 726521
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Partial sums of A328259.
Column k=3 of A356124.

Programs

  • Mathematica
    a[n_] := Sum[k * DivisorSigma[2, k], {k, 1, n}]; Array[a, 39] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, k*sigma(k, 2));
    
  • PARI
    a(n) = sum(k=1, n, k^3*binomial(n\k+1, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k^3*x^k/(1-x^k)^2)/(1-x))
    
  • Python
    from math import isqrt
    def A356125(n): return (-((s:=isqrt(n))*(s+1))**3>>1) + sum(k*(q:=n//k)*(q+1)*(2*k**2+q*(q+1)) for k in range(1,s+1))>>2 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^3 * binomial(floor(n/k)+1,2).
G.f.: (1/(1-x)) * Sum_{k>=1} k^3 * x^k/(1 - x^k)^2.
a(n) ~ zeta(3) * n^4 / 4. - Vaclav Kotesovec, Aug 02 2022

A356045 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} sigma_k(j) * floor(n/j).

Original entry on oeis.org

1, 1, 4, 1, 5, 7, 1, 7, 10, 13, 1, 11, 18, 21, 16, 1, 19, 40, 45, 28, 25, 1, 35, 102, 123, 72, 48, 28, 1, 67, 280, 393, 250, 138, 57, 38, 1, 131, 798, 1371, 1020, 540, 189, 83, 44, 1, 259, 2320, 5025, 4498, 2514, 885, 301, 101, 53, 1, 515, 6822, 18963, 20652, 12828, 4917, 1553, 403, 129, 56
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,    1,     1, ...
   4,  5,   7,  11,   19,    35, ...
   7, 10,  18,  40,  102,   280, ...
  13, 21,  45, 123,  393,  1371, ...
  16, 28,  72, 250, 1020,  4498, ...
  25, 48, 138, 540, 2514, 12828, ...
		

Crossrefs

Columns k=0..3 give A061201, A280077, A356042, A356043.
T(n,n) gives A356046.
Cf. A322103.

Programs

  • PARI
    T(n, k) = sum(j=1, n, sigma(j, k)*(n\j));
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, d^k*numdiv(j/d)));
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, sigma(d, k)));

Formula

G.f. of column k: (1/(1-x)) * Sum_{j>=1} sigma_k(j) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k * tau(j/d).
T(n,k) = Sum_{j=1..n} Sum_{d|j} sigma_k(d).
Showing 1-2 of 2 results.