cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A356124 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j^k * binomial(floor(n/j)+1,2).

Original entry on oeis.org

1, 1, 4, 1, 5, 8, 1, 7, 11, 15, 1, 11, 19, 23, 21, 1, 19, 41, 47, 33, 33, 1, 35, 103, 125, 77, 57, 41, 1, 67, 281, 395, 255, 149, 71, 56, 1, 131, 799, 1373, 1025, 555, 205, 103, 69, 1, 259, 2321, 5027, 4503, 2537, 905, 325, 130, 87, 1, 515, 6823, 18965, 20657, 12867, 4945, 1585, 442, 170, 99
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,    1,     1,     1, ...
   4,  5,   7,  11,   19,    35,    67, ...
   8, 11,  19,  41,  103,   281,   799, ...
  15, 23,  47, 125,  395,  1373,  5027, ...
  21, 33,  77, 255, 1025,  4503, 20657, ...
  33, 57, 149, 555, 2537, 12867, 68969, ...
		

Crossrefs

Column k=0..4 give A024916, A143127, A143128, A356125, A356126.
T(n,n) gives A356129.
T(n,n+1) gives A356128.

Programs

  • Mathematica
    T[n_, k_] := Sum[j^k * Binomial[Floor[n/j] + 1, 2], {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    T(n, k) = sum(j=1, n, j^k*binomial(n\j+1, 2));
    
  • PARI
    T(n, k) = sum(j=1, n, j*sigma(j, k-1));
    
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A356124_T(n,k): return ((s:=isqrt(n))*(s+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)*(q+1))+(w*(bernoulli(k+1,q+1)-bernoulli(k+1))<<1) for w in range(1,s+1)))//(k+1)>>1
    def A356124_gen(): # generator of terms
         return (A356124_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A356124_list = list(islice(A356124_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1-x)) * Sum_{j>=1} j^k * x^j/(1 - x^j)^2.
T(n,k) = Sum_{j=1..n} j * sigma_{k-1}(j).

A364269 a(n) = Sum_{k=1..n} k^3*sigma_2(k), where sigma_2 is A001157.

Original entry on oeis.org

1, 41, 311, 1655, 4905, 15705, 32855, 76375, 142714, 272714, 435096, 797976, 1171466, 1857466, 2734966, 4131702, 5556472, 8210032, 10692990, 15060990, 19691490, 26186770, 32635280, 44385680, 54557555, 69497155, 85637215, 108686815, 129222353, 164322353
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n^3*DivisorSigma[2, n], {n, 1, 30}]] (* Amiram Eldar, Oct 20 2023 *)
  • PARI
    f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
    a(n, s=3, t=2) = sum(k=1, n, k^(s+t)*f(n\k, s));
    
  • Python
    def A364269(n): return sum(k*(k**2*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A364269(n): return ((((s:=isqrt(n))*(s+1))**4*(1-s*(s+1<<1))>>2) + sum(((q:=n//k)*(q+1))**2*k**3*(3*k**2+(q*(q+1<<1)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^5 * A000537(floor(n/k)).
a(n) ~ (zeta(3)/6) * n^6. - Amiram Eldar, Oct 20 2023

A356249 a(n) = Sum_{k=1..n} (k * floor(n/k))^3.

Original entry on oeis.org

1, 16, 62, 219, 405, 1053, 1523, 2948, 4407, 7041, 8703, 15283, 17949, 24657, 32685, 44806, 50536, 70687, 78573, 105411, 125879, 149879, 163565, 222425, 247476, 286134, 327634, 396258, 423084, 532236, 564818, 664763, 738095, 821693, 904937, 1107618, 1162268, 1277588, 1395760
Offset: 1

Views

Author

Seiichi Manyama, Jul 31 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(k * Floor[n/k])^3, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    a(n) = sum(k=1, n, (k*(n\k))^3);
    
  • PARI
    a(n) = sum(k=1, n, k^3*sumdiv(k, d, 1-(1-1/d)^3));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4)/(1-x))
    
  • Python
    from math import isqrt
    def A356249(n): return -(s:=isqrt(n))**5*(s+1)**2 + sum((q:=n//k)**2*(k*(3*(k-1))+q*(k*(k*(4*k+6)-6)+q*(k*(3*(k-1))+1)+2)+1) for k in range(1,s+1))>>2 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^3 * Sum_{d|k} (1 - (1 - 1/d)^3).
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k - 1)^3) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^4.
From Vaclav Kotesovec, Aug 02 2022: (Start)
a(n) = A064603(n) - 3*A356125(n) + 3*A319086(n).
a(n) ~ n^4 * (Pi^2/8 + Pi^4/360 - 3*zeta(3)/4). (End)

A364268 a(n) = Sum_{k=1..n} k^2*sigma_2(k), where sigma_2 is A001157.

Original entry on oeis.org

1, 21, 111, 447, 1097, 2897, 5347, 10787, 18158, 31158, 45920, 76160, 104890, 153890, 212390, 299686, 383496, 530916, 661598, 879998, 1100498, 1395738, 1676108, 2165708, 2572583, 3147183, 3744963, 4568163, 5276285, 6446285, 7370767, 8768527, 10097107
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n^2*DivisorSigma[2, n], {n, 1, 33}]] (* Amiram Eldar, Oct 20 2023 *)
  • PARI
    f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
    a(n, s=2, t=2) = sum(k=1, n, k^(s+t)*f(n\k, s));
    
  • Python
    def A364268(n): return sum(k**4*(m:=n//k)*(m+1)*((m<<1)+1)//6 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A364268(n): return (((s:=isqrt(n))*(s+1)*(2*s+1))**2*(1-3*s*(s+1))//6 + sum((q:=n//k)*(q+1)*(2*q+1)*k**2*(5*k**2+3*q*(q+1)-1) for k in range(1,s+1)))//30 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^4 * A000330(floor(n/k)).
a(n) ~ (zeta(3)/5) * n^5. - Amiram Eldar, Oct 20 2023

A364194 a(n) = Sum_{k=1..n} k^3*sigma(k), where sigma is A000203.

Original entry on oeis.org

1, 25, 133, 581, 1331, 3923, 6667, 14347, 23824, 41824, 57796, 106180, 136938, 202794, 283794, 410770, 499204, 726652, 863832, 1199832, 1496184, 1879512, 2171520, 3000960, 3485335, 4223527, 5010847, 6240159, 6971829, 8915829, 9869141, 11933525, 13658501
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2023

Keywords

Crossrefs

Partial sums of A282211.

Programs

  • Mathematica
    Accumulate[Table[n^3*DivisorSigma[1, n], {n, 1, 33}]] (* Amiram Eldar, Oct 20 2023 *)
  • PARI
    f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
    a(n, s=3, t=1) = sum(k=1, n, k^(s+t)*f(n\k, s));
    
  • Python
    def A364194(n): return sum((k**2*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A364194(n): return ((((s:=isqrt(n))*(s + 1))**3*(2*s+1)*(1-3*s*(s+1))>>1) + sum((q:=n//k)*(q+1)*k**3*(q*(15*k+q*(15*k+12*q+18)+2)-2) for k in range(1,s+1)))//60 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^4 * A000537(floor(n/k)).
a(n) ~ (zeta(2)/5) * n^5. - Amiram Eldar, Oct 20 2023
Showing 1-5 of 5 results.