cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356045 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} sigma_k(j) * floor(n/j).

Original entry on oeis.org

1, 1, 4, 1, 5, 7, 1, 7, 10, 13, 1, 11, 18, 21, 16, 1, 19, 40, 45, 28, 25, 1, 35, 102, 123, 72, 48, 28, 1, 67, 280, 393, 250, 138, 57, 38, 1, 131, 798, 1371, 1020, 540, 189, 83, 44, 1, 259, 2320, 5025, 4498, 2514, 885, 301, 101, 53, 1, 515, 6822, 18963, 20652, 12828, 4917, 1553, 403, 129, 56
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,    1,     1, ...
   4,  5,   7,  11,   19,    35, ...
   7, 10,  18,  40,  102,   280, ...
  13, 21,  45, 123,  393,  1371, ...
  16, 28,  72, 250, 1020,  4498, ...
  25, 48, 138, 540, 2514, 12828, ...
		

Crossrefs

Columns k=0..3 give A061201, A280077, A356042, A356043.
T(n,n) gives A356046.
Cf. A322103.

Programs

  • PARI
    T(n, k) = sum(j=1, n, sigma(j, k)*(n\j));
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, d^k*numdiv(j/d)));
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, sigma(d, k)));

Formula

G.f. of column k: (1/(1-x)) * Sum_{j>=1} sigma_k(j) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k * tau(j/d).
T(n,k) = Sum_{j=1..n} Sum_{d|j} sigma_k(d).