cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356046 a(n) = Sum_{k=1..n} sigma_n(k) * floor(n/k).

Original entry on oeis.org

1, 7, 40, 393, 4498, 68898, 1205205, 24830617, 574911611, 14936215765, 427782762142, 13426870089265, 457622727372932, 16842615801316402, 665489035541044561, 28102162770144986248, 1262904298391426474369, 60182778141796948356895
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, sigma(k, n)*(n\k));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^n*numdiv(k/d)));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, sigma(d, n)));

Formula

a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} sigma_n(k) * x^k/(1 - x^k).
a(n) = Sum_{k=1..n} Sum_{d|k} d^n * tau(k/d).
a(n) = Sum_{k=1..n} Sum_{d|k} sigma_n(d).
a(n) ~ c * n^n, where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Aug 07 2022