A356082 Matula-Goebel number of the complete binary tree of n levels.
1, 4, 49, 51529, 400034745289, 135016053798647886015597889
Offset: 1
Examples
For n=3, the complete binary tree of 3 levels is 49 / \ a(3) = prime(4)^2 4 4 = 49 / \ / \ 1 1 1 1
Crossrefs
Programs
-
PARI
a(n) = my(ret=1); for(i=2,n, ret=prime(ret)^2); ret;
Formula
a(n) = prime(a(n-1))^2, for n>=2.
Extensions
a(6) from Rémy Sigrist, Jul 26 2022
Comments