cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356100 a(n) = Sum_{k=1..n} (k - 1)^n * floor(n/k).

Original entry on oeis.org

0, 1, 9, 99, 1301, 20581, 376891, 7914216, 186905206, 4915451602, 142368695176, 4506118905870, 154720069309364, 5729167232515112, 227585086051159866, 9654819212943764500, 435659280972794395356, 20836049921760968809231, 1052864549462731148832219
Offset: 1

Views

Author

Seiichi Manyama, Jul 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k-1)^n Floor[n/k],{k,n}],{n,20}] (* Harvey P. Dale, Dec 14 2024 *)
  • PARI
    a(n) = sum(k=1, n, (k-1)^n*(n\k));
    
  • PARI
    a(n) = sum(k=1, n, sigma(k, n)-(n\k)^n);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (d-1)^n));
    
  • Python
    def A356100(n): return sum((k-1)**n*(n//k) for k in range(2,n+1)) # Chai Wah Wu, Jul 26 2022

Formula

a(n) = A319194(n) - A332469(n).
a(n) = Sum_{k=1..n} Sum_{d|k} (d - 1)^n.
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} (k - 1)^n * x^k/(1 - x^k).