cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356122 Number of Lucas divisors of the n-th Lucas number.

Original entry on oeis.org

2, 1, 2, 3, 2, 2, 4, 2, 2, 4, 3, 2, 4, 2, 3, 5, 2, 2, 5, 2, 3, 5, 3, 2, 4, 3, 3, 5, 3, 2, 6, 2, 2, 5, 3, 4, 5, 2, 3, 5, 3, 2, 6, 2, 3, 7, 3, 2, 4, 3, 4, 5, 3, 2, 6, 4, 3, 5, 3, 2, 6, 2, 3, 7, 2, 4, 6, 2, 3, 5, 5, 2, 5, 2, 3, 7, 3, 4, 6, 2, 3, 6, 3, 2, 6, 4, 3, 5, 3, 2, 8, 4, 3, 5, 3, 4, 4, 2, 4, 7
Offset: 0

Views

Author

Michel Marcus, Jul 27 2022

Keywords

Crossrefs

Cf. A076984 (similar for Fibonacci numbers).

Programs

  • PARI
    L(n)=fibonacci(n+1)+fibonacci(n-1); \\ A000032
    isld(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); }; \\ A102460
    nbld(n) = sumdiv(n, d, isld(d)); \\ A304092
    a(n) = nbld(L(n));
    
  • PARI
    a(n) = if(n==1, return(1)); my(k=fibonacci(n+1)+fibonacci(n-1),c=0,x=2,y=1); while(x <= k, if(k%x == 0, c++); [x,y]=[y,x+y]); c; \\ Daniel Suteu, Aug 25 2022

Formula

a(n) = A304092(A000032(n)).

A356666 Smallest m such that the m-th Lucas number has exactly n divisors that are also Lucas numbers.

Original entry on oeis.org

1, 0, 3, 6, 15, 30, 45, 90, 105, 210, 405, 810, 315, 630, 3645, 2025, 945, 1890, 1575, 3150, 2835, 5670, 36450, 25025, 3465, 6930, 101250, 11025, 22050, 51030, 14175, 28350, 10395, 20790, 2952450, 175175, 17325, 34650, 1937102445, 625625, 31185, 62370, 127575, 255150
Offset: 1

Views

Author

Michel Marcus, Aug 22 2022

Keywords

Comments

Further terms <= 51030: a(28) = 11025, a(29) = 22050, a(30) = 51030, a(31) = 14175, a(32) = 28350, a(33) = 10395, a(34) = 20790, a(37) = 17325, a(38) = 34650, a(41) = 31185, a(49) = 45045. - Daniel Suteu, Aug 24 2022

Crossrefs

Cf. A105802 (similar for Fibonacci).

Programs

  • PARI
    L(n)=fibonacci(n+1)+fibonacci(n-1); \\ A000032
    isld(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); }; \\ A102460
    nbld(n) = sumdiv(n, d, isld(d)); \\ A304092
    a(n) = my(k=0); while(nbld(L(k)) != n, k++); k;
    
  • PARI
    countLd(n) = my(c=0,x=2,y=1); while(x<=n, if(n%x==0, c++); [x,y]=[y,x+y]); c;
    a(n) = if(n==1, return(1)); my(k=0,x=2,y=1); while(1, if(countLd(x) == n, return(k)); [x,y,k]=[y,x+y,k+1]); \\ Daniel Suteu, Aug 24 2022

Formula

A000032(a(n)) = A356123(n).

Extensions

a(12)-a(26) from Daniel Suteu, Aug 24 2022
More terms from Daniel Suteu and David A. Corneth, Sep 04 2022
Showing 1-2 of 2 results.