cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356129 a(n) = Sum_{k=1..n} k * sigma_{n-1}(k).

Original entry on oeis.org

1, 7, 41, 395, 4503, 68969, 1205345, 24831145, 574932340, 14936279962, 427782949566, 13426887958078, 457622797727840, 16842616079514468, 665489067204502336, 28102162931539093732, 1262904299189373463930, 60182778247311758955112
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k * DivisorSigma[n - 1, k], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, k*sigma(k, n-1));
    
  • PARI
    a(n) = sum(k=1, n, k^n*binomial(n\k+1, 2));
    
  • Python
    from math import isqrt
    from sympy import bernoulli
    def A356129(n): return ((s:=isqrt(n))*(s+1)*(bernoulli(n+1)-bernoulli(n+1,s+1))+sum(k**n*(n+1)*(q:=n//k)*(q+1)+(k*(bernoulli(n+1,q+1)-bernoulli(n+1))<<1) for k in range(1,s+1)))//(n+1)>>1 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k^n * binomial(floor(n/k)+1,2).
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} k^n * x^k/(1 - x^k)^2.
a(n) ~ c * n^n, where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Aug 07 2022