cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A356124 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j^k * binomial(floor(n/j)+1,2).

Original entry on oeis.org

1, 1, 4, 1, 5, 8, 1, 7, 11, 15, 1, 11, 19, 23, 21, 1, 19, 41, 47, 33, 33, 1, 35, 103, 125, 77, 57, 41, 1, 67, 281, 395, 255, 149, 71, 56, 1, 131, 799, 1373, 1025, 555, 205, 103, 69, 1, 259, 2321, 5027, 4503, 2537, 905, 325, 130, 87, 1, 515, 6823, 18965, 20657, 12867, 4945, 1585, 442, 170, 99
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,    1,     1,     1, ...
   4,  5,   7,  11,   19,    35,    67, ...
   8, 11,  19,  41,  103,   281,   799, ...
  15, 23,  47, 125,  395,  1373,  5027, ...
  21, 33,  77, 255, 1025,  4503, 20657, ...
  33, 57, 149, 555, 2537, 12867, 68969, ...
		

Crossrefs

Column k=0..4 give A024916, A143127, A143128, A356125, A356126.
T(n,n) gives A356129.
T(n,n+1) gives A356128.

Programs

  • Mathematica
    T[n_, k_] := Sum[j^k * Binomial[Floor[n/j] + 1, 2], {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    T(n, k) = sum(j=1, n, j^k*binomial(n\j+1, 2));
    
  • PARI
    T(n, k) = sum(j=1, n, j*sigma(j, k-1));
    
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A356124_T(n,k): return ((s:=isqrt(n))*(s+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)*(q+1))+(w*(bernoulli(k+1,q+1)-bernoulli(k+1))<<1) for w in range(1,s+1)))//(k+1)>>1
    def A356124_gen(): # generator of terms
         return (A356124_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A356124_list = list(islice(A356124_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1-x)) * Sum_{j>=1} j^k * x^j/(1 - x^j)^2.
T(n,k) = Sum_{j=1..n} j * sigma_{k-1}(j).

A356239 a(n) = Sum_{k=1..n} k^n * sigma_0(k).

Original entry on oeis.org

1, 9, 71, 963, 9873, 231749, 2976863, 86348423, 1824883450, 55584932826, 1104642697680, 64932555347084, 1366828157222090, 61273696016238014, 2581786206601959958, 129797968403021602450, 3678372903755436314440, 295835829367866540495396
Offset: 1

Views

Author

Seiichi Manyama, Jul 30 2022

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(k^n * numtheory:-tau(k),k=1..n) end proc:
    map(f, [$1..30]); # Robert Israel, Jan 21 2024
  • Mathematica
    a[n_] := Sum[k^n * DivisorSigma[0, k], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    a(n) = sum(k=1, n, k^n*sigma(k, 0));
    
  • PARI
    a(n) = sum(k=1, n, k^n*sum(j=1, n\k, j^n));
    
  • Python
    from math import isqrt
    from sympy import bernoulli
    def A356239(n): return (-(bernoulli(n+1, (s:=isqrt(n))+1)-(b:=bernoulli(n+1)))**2//(n+1) + sum(k**n*(bernoulli(n+1, n//k+1)-b)<<1 for k in range(1,s+1)))//(n+1) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^n * Sum_{j=1..floor(n/k)} j^n.

A356131 a(n) = Sum_{k=1..n} (k - 1)^n * binomial(floor(n/k)+1,2).

Original entry on oeis.org

0, 1, 9, 100, 1302, 20648, 377022, 7921039, 186926431, 4916562309, 142373072781, 4506381442625, 154721361953489, 5729251983077521, 227585590018322461, 9654855432715969784, 435659531345223039702, 20836069677785611552293
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(k - 1)^n * Binomial[Floor[n/k]+1, 2], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, (k-1)^n*binomial((n\k)+1, 2));
    
  • PARI
    a(n) = sum(k=1, n, k*(sigma(k, n-1)-(n\k)^n));
    
  • PARI
    a(n) = sum(k=1, n, k*sumdiv(k, d, (d-1)^n/d));

Formula

a(n) = Sum_{k=1..n} k * (sigma_{n-1}(k) - floor(n/k)^n) = A356129(n) - A350109(n).
a(n) = Sum_{k=1..n} k * Sum_{d|k} (d - 1)^n / d.
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} (k - 1)^n * x^k/(1 - x^k)^2.

A356243 a(n) = Sum_{k=1..n} k^2 * sigma_{n-2}(k).

Original entry on oeis.org

1, 9, 49, 447, 4607, 71009, 1210855, 24980627, 575624572, 14958422046, 427890493960, 13431874937840, 457651929853662, 16844143705998554, 665499756005678382, 28102799297908820326, 1262909308355648335240, 60183118566605371095996
Offset: 1

Views

Author

Seiichi Manyama, Jul 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k^2 * DivisorSigma[n - 2, k], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    a(n) = sum(k=1, n, k^2*sigma(k, n-2));
    
  • PARI
    a(n) = sum(k=1, n, k^n*sum(j=1, n\k, j^2));
    
  • Python
    from math import isqrt
    from sympy import bernoulli
    def A356243(n): return (((s:=isqrt(n))*(s+1)*(2*s+1))*((b:=bernoulli(n+1))-bernoulli(n+1, s+1)) + sum(k**n*(n+1)*((q:=n//k)*(q+1)*(2*q+1))+6*k**2*(bernoulli(n+1,q+1)-b) for k in range(1,s+1)))//(n+1)//6 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^n * Sum_{j=1..floor(n/k)} j^2 = Sum_{k=1..n} k^n * A000330(floor(n/k)).
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} k^n * x^k * (1 + x^k)/(1 - x^k)^3.

A356130 a(n) = Sum_{k=1..n} sigma_{n-1}(k).

Original entry on oeis.org

1, 4, 16, 111, 999, 12513, 185683, 3316418, 67810767, 1576561677, 40862702931, 1171104916405, 36722498575799, 1251419967587955, 46034784688102781, 1818440444592581068, 76763036794222996512, 3448830049286378614987, 164309958491233496689189
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[DivisorSigma[n-1, k], {k, 1, n}]; Array[a, 19] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, n-1));
    
  • PARI
    a(n) = sum(k=1, n, k^(n-1)*(n\k));
    
  • Python
    from math import isqrt
    from sympy import bernoulli
    def A350130(n): return (((s:=isqrt(n))+1)*((b:=bernoulli(n))-bernoulli(n, s+1))+sum(k**(n-1)*n*((q:=n//k)+1)-b+bernoulli(n, q+1) for k in range(1,s+1)))//n if n>1 else 1 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^(n-1) * floor(n/k).
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} k^(n-1) * x^k/(1 - x^k).
Showing 1-5 of 5 results.