cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A356129 a(n) = Sum_{k=1..n} k * sigma_{n-1}(k).

Original entry on oeis.org

1, 7, 41, 395, 4503, 68969, 1205345, 24831145, 574932340, 14936279962, 427782949566, 13426887958078, 457622797727840, 16842616079514468, 665489067204502336, 28102162931539093732, 1262904299189373463930, 60182778247311758955112
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k * DivisorSigma[n - 1, k], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, k*sigma(k, n-1));
    
  • PARI
    a(n) = sum(k=1, n, k^n*binomial(n\k+1, 2));
    
  • Python
    from math import isqrt
    from sympy import bernoulli
    def A356129(n): return ((s:=isqrt(n))*(s+1)*(bernoulli(n+1)-bernoulli(n+1,s+1))+sum(k**n*(n+1)*(q:=n//k)*(q+1)+(k*(bernoulli(n+1,q+1)-bernoulli(n+1))<<1) for k in range(1,s+1)))//(n+1)>>1 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k^n * binomial(floor(n/k)+1,2).
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} k^n * x^k/(1 - x^k)^2.
a(n) ~ c * n^n, where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Aug 07 2022

A356240 a(n) = Sum_{k=1..n} (k-1)^n * Sum_{j=1..floor(n/k)} j^n.

Original entry on oeis.org

0, 1, 9, 114, 1332, 25404, 395460, 9724901, 207584371, 6120938951, 151737244257, 5932533980409, 168400694345669, 7145593797561899, 260681076993636793, 12410128414690753548, 473029927456547840472, 27572016889372245275679
Offset: 1

Views

Author

Seiichi Manyama, Jul 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(k - 1)^n * Sum[j^n, {j, 1, Floor[n/k]}], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    a(n) = sum(k=1, n, (k-1)^n*sum(j=1, n\k, j^n));
    
  • PARI
    a(n) = sum(k=1, n, k^n*(sigma(k, 0)-(n\k)^n));
    
  • PARI
    a(n) = sum(k=1, n, k^n*sumdiv(k, d, (1-1/d)^n));

Formula

a(n) = Sum_{k=1..n} k^n * (sigma_0(k) - floor(n/k)^n) = A356239(n) - A356238(n).
a(n) = Sum_{k=1..n} k^n * Sum_{d|k} (1 - 1/d)^n.

A356244 a(n) = Sum_{k=1..n} (k-1)^n * Sum_{j=1..floor(n/k)} j^2.

Original entry on oeis.org

0, 1, 9, 102, 1304, 20784, 377286, 7934693, 186969913, 4918785791, 142381832107, 4506907611825, 154723950495961, 5729421493899419, 227586600129484543, 9654927881195999544, 435660032125475809618, 20836109197604840372979, 1052865018045922422499409
Offset: 1

Views

Author

Seiichi Manyama, Jul 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(k - 1)^n * Sum[j^2, {j, 1, Floor[n/k]}], {k, 1, n}]; Array[a, 19] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    a(n) = sum(k=1, n, (k-1)^n*sum(j=1, n\k, j^2));
    
  • PARI
    a(n) = sum(k=1, n, k^2*(sigma(k, n-2)-(n\k)^n));
    
  • PARI
    a(n) = sum(k=1, n, k^2*sumdiv(k, d, (d-1)^n/d^2));

Formula

a(n) = Sum_{k=1..n} (k-1)^n * A000330(floor(n/k)).
a(n) = Sum_{k=1..n} k^2 * (sigma_{n-2}(k) - floor(n/k)^n) = A356243(n) - A350125(n).
a(n) = Sum_{k=1..n} k^2 * Sum_{d|k} (d - 1)^n / d^2.
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} (k - 1)^n * x^k * (1 + x^k)/(1 - x^k)^3.
Showing 1-3 of 3 results.