cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356159 Sum of the prime indices of the smallest number that has the same prime signature as n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 3, 4, 1, 4, 1, 4, 3, 3, 1, 5, 2, 3, 3, 4, 1, 6, 1, 5, 3, 3, 3, 6, 1, 3, 3, 5, 1, 6, 1, 4, 4, 3, 1, 6, 2, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 7, 1, 3, 4, 6, 3, 6, 1, 4, 3, 6, 1, 7, 1, 3, 4, 4, 3, 6, 1, 6, 4, 3, 1, 7, 3, 3, 3, 5, 1, 7, 3, 4, 3, 3, 3, 7, 1, 4, 4, 6, 1, 6, 1, 5, 6
Offset: 1

Views

Author

Antti Karttunen, Oct 25 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i*l[i][2], i=1..nops(l)))
            (sort(ifactors(n)[2], (x, y)->x[2]>y[2])):
    seq(a(n), n=1..105);  # Alois P. Heinz, Oct 26 2022
  • Mathematica
    {0}~Join~Array[Total@ MapIndexed[#1 First[#2] &, Sort[FactorInteger[#][[All, -1]], Greater]] &, 120] (* Michael De Vlieger, Oct 25 2022 *)
  • PARI
    A356159(n) = A056239(A046523(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }

Formula

a(n) = A056239(A046523(n)).