cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A356224 Number of divisors of n whose prime indices cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 5, 1, 4, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 4, 1, 6, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 3, 1, 2, 1, 9, 1, 2, 1, 3, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 7, 1, 3, 1, 3, 1, 2, 1, 10, 1, 2, 1, 3, 1, 3, 1, 5, 1, 2, 1, 5, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) gapless divisors of n = 1..24:
  1  2  1  4  1  6  1  8  1  2  1  12  1  2  1  16  1  18  1  4  1  2  1  24
     1     2     2     4     1     6      1     8      6      2     1     12
           1     1     2           4            4      2      1           8
                       1           2            2      1                  6
                                   1            1                         4
                                                                          2
                                                                          1
For example, the divisors of 12 are {1,2,3,4,6,12}, of which {1,2,4,6,12} belong to A055932, so a(12) = 5.
		

Crossrefs

These divisors belong to A055932, a subset of A073491 (complement A073492).
The complement is A356225.
A001223 lists the prime gaps.
A328338 has third-largest divisor prime.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    Table[Length[Select[Divisors[n],normQ[primeMS[#]]&]],{n,100}]

A356069 Number of divisors of n whose prime indices cover an interval of positive integers (A073491).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 6, 2, 3, 4, 5, 2, 6, 2, 4, 3, 3, 2, 8, 3, 3, 4, 4, 2, 7, 2, 6, 3, 3, 4, 9, 2, 3, 3, 5, 2, 5, 2, 4, 6, 3, 2, 10, 3, 4, 3, 4, 2, 8, 3, 5, 3, 3, 2, 10, 2, 3, 4, 7, 3, 5, 2, 4, 3, 5, 2, 12, 2, 3, 6, 4, 4, 5, 2, 6, 5, 3, 2, 7, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

First differs from A000005 at 10, 14, 20, 21, 22, ... = A307516.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) counted divisors of n = 1, 2, 4, 6, 12, 16, 24, 30, 36, 48, 72, 90:
  1   2   4   6  12  16  24  30  36  48  72  90
      1   2   3   6   8  12  15  18  24  36  45
          1   2   4   4   8   6  12  16  24  30
              1   3   2   6   5   9  12  18  18
                  2   1   4   3   6   8  12  15
                  1       3   2   4   6   9   9
                          2   1   3   4   8   6
                          1       2   3   6   5
                                  1   2   4   3
                                      1   3   2
                                          2   1
                                          1
		

Crossrefs

These divisors belong to A073491, a superset of A055932, complement A073492.
The initial case is A356224.
The complement in the initial case is counted by A356225.
A000005 counts divisors.
A001223 lists the prime gaps.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A328338 has third-largest divisor prime.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    Table[Length[Select[Divisors[n],nogapQ[primeMS[#]]&]],{n,100}]

A356221 Position of second appearance of 2n in the sequence of prime gaps A001223; if 2n does not appear at least twice, a(n) = -1.

Original entry on oeis.org

3, 6, 11, 72, 42, 47, 62, 295, 180, 259, 297, 327, 446, 462, 650, 1315, 1059, 1532, 4052, 2344, 3732, 3861, 8805, 7234, 4754, 2810, 4231, 14124, 5949, 9834, 17200, 10229, 19724, 25248, 15927, 30765, 42673, 28593, 24554, 50523, 44227, 44390, 29040, 89715, 47350
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2022

Keywords

Comments

Prime gaps (A001223) are the differences between consecutive prime numbers. They begin: 1, 2, 2, 4, 2, 4, 2, 4, 6, ...

Crossrefs

The position of the first (instead of second) appearance of 2n is A038664.
Column k = 2 of A356222.
The position of the n-th appearance of 2n is A356223.
A001223 lists the prime gaps, reduced A028334.
A073491 lists numbers with gapless prime indices.
A274121 counts appearances of the n-th prime gap in those prior.
A356226 gives the lengths of maximal gapless intervals of prime indices.

Programs

  • Mathematica
    nn=1000;
    gaps=Differences[Array[Prime,nn]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[gaps,2*n][[2,1]],{n,mnrm[Select[Range[nn],Length[Position[gaps,2*#]]>=2&]]}]

A356222 Array read by antidiagonals upwards where A(n,k) is the position of the k-th appearance of 2n in the sequence of prime gaps A001223. If A001223 does not contain 2n at least k times, set A(n,k) = -1.

Original entry on oeis.org

2, 4, 3, 9, 6, 5, 24, 11, 8, 7, 34, 72, 15, 12, 10, 46, 42, 77, 16, 14, 13, 30, 47, 53, 79, 18, 19, 17, 282, 62, 91, 61, 87, 21, 22, 20, 99, 295, 66, 97, 68, 92, 23, 25, 26, 154, 180, 319, 137, 114, 80, 94, 32, 27, 28, 189, 259, 205, 331, 146, 121, 82, 124, 36, 29, 33
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2022

Keywords

Comments

Prime gaps (A001223) are the differences between consecutive prime numbers. They begin: 1, 2, 2, 4, 2, 4, 2, 4, 6, ...
This is a permutation of the positive integers > 1.

Examples

			Array begins:
        k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
  n=1:   2   3   5   7  10  13  17  20  26
  n=2:   4   6   8  12  14  19  22  25  27
  n=3:   9  11  15  16  18  21  23  32  36
  n=4:  24  72  77  79  87  92  94 124 126
  n=5:  34  42  53  61  68  80  82 101 106
  n=6:  46  47  91  97 114 121 139 168 197
  n=7:  30  62  66 137 146 150 162 223 250
  n=8: 282 295 319 331 335 378 409 445 476
  n=9:  99 180 205 221 274 293 326 368 416
For example, the positions in A001223 of appearances of 2*3 begin: 9, 11, 15, 16, 18, 21, 23, ..., which is row n = 3 (A320701).
		

Crossrefs

The row containing n is A028334(n).
Row n = 1 is A029707.
Row n = 2 is A029709.
Column k = 1 is A038664.
The column containing n is A274121(n).
Column k = 2 is A356221.
The diagonal A(n,n) is A356223.
A001223 lists the prime gaps.
A073491 lists numbers with gapless prime indices.
A356224 counts even divisors with gapless prime indices, complement A356225.

Programs

  • Mathematica
    gapa=Differences[Array[Prime,10000]];
    Table[Position[gapa,2*(k-n+1)][[n,1]],{k,6},{n,k}]
Showing 1-4 of 4 results.