cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356229 Number of maximal gapless submultisets of the prime indices of 2n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This is a bisection of A287170, but is important in its own right because the even numbers are exactly those whose prime indices begin with 1.

Examples

			The prime indices of 2*9282 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(9282) = 3.
		

Crossrefs

This is the even (bisected) case of A287170, firsts A066205.
Alternate row-lengths of A356226, minima A356227(2n), maxima A356228(2n).
A001221 counts distinct prime factors, sum A001414.
A001222 counts prime indices, listed by A112798, sum A056239.
A003963 multiplies together the prime indices of n.
A073093 counts the prime indices of 2n.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Split[primeMS[2n],#1>=#2-1&]],{n,100}]
  • PARI
    A287170(n) = { my(f=factor(n)); if(#f~==0, return (0), return(#f~ - sum(i=1, #f~-1, if (primepi(f[i, 1])+1 == primepi(f[i+1, 1]), 1, 0)))); };
    A356229(n) = A287170(2*n); \\ Antti Karttunen, Jan 19 2025

Formula

a(n) = A287170(2n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 19 2025