cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356253 a(n) is the largest coefficient of P(x) := Product_{k} (x + p_k), where (p_k) are the primes dividing n listed with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 12, 9, 10, 11, 16, 13, 14, 15, 32, 17, 21, 19, 24, 21, 22, 23, 44, 25, 26, 27, 32, 29, 31, 31, 80, 33, 34, 35, 60, 37, 38, 39, 68, 41, 42, 43, 48, 45, 46, 47, 112, 49, 50, 51, 56, 53, 81, 55, 92, 57, 58, 59, 92, 61, 62, 63, 240, 65, 66, 67, 72
Offset: 1

Views

Author

Thomas Scheuerle, Jul 31 2022

Keywords

Comments

a(n) is the greatest number we may obtain by applying elementary symmetric functions onto the prime factors of n with multiplicity.
The record values of a(n)/n appear at powers of two.
If a(n) is greater than n, then it equals in most cases A003415(n), the first exception where a(n) > A003415(n) > n is at n = 64.
Conjectured: a(A002110(n)) = A024451(n), for n > 2.
Conjecture equality breaks down after n = 175, as a(A002110(176)) > A024451(176). - Antti Karttunen, Feb 08 2024

Crossrefs

Cf. A002110, A003415, A024451, A070918, A083348, A109388, A260613, A369657 (difference between this sequence and A003415).
Cf. A065048 (same concept but uses numbers 1..n instead of prime factors of n).

Programs

  • PARI
    a(n) = vecmax(Vec(vecprod([(x+f[1])^f[2] | f<-factor(n)~]))) \\ Edited by M. F. Hasler, Feb 14 2024

Formula

a(n) = n iff n is not in A083348, otherwise a(n) > n.
a(2^n) = A109388(n) = binomial( n, floor(n/3) )*2^(n-floor(n/3)).
a(p^n) = binomial( n, floor(n/(p+1)) )*p^(n-floor(n/(p+1))), if p is prime.
a(p*n)/a(n) >= n and <= n+1 if p is prime.
a(p*q)/a(q) = p if p and q are prime. This is also true if q is a prime greater than 7 and p is a product of two primes greater than 4.
a(A002110(n)) >= A024451(n), for n > 2. The maximum of row n in A260613 a variant of A070918.