cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356258 Number of 6-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.

Original entry on oeis.org

1, 12, 396, 19920, 1281420, 96807312, 8175770064, 748315668672, 72729762868620, 7402621930738320, 781429888276676496, 84955810313787521472, 9463540456205136873936, 1075903653146632508721600, 124461755084172965028753600, 14615050011682746903615601920
Offset: 0

Views

Author

Dave R.M. Langers, Oct 12 2022

Keywords

Examples

			a(1)=12, because twelve paths start at the origin, visit one of the adjacent vertices, and immediately return to the origin, resulting in 12 different paths of length 2n=2*1=2.
		

Crossrefs

Row k=6 of A287318.
1-5 dimensional analogs are A000984, A002894, A002896, A039699, A287317.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
        end:
    a:= n-> (2*n)!*b(n, 6)/n!^2:
    seq(a(n), n=0..15);  # Alois P. Heinz, Jan 30 2023

Formula

E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^6. (I = Modified Bessel function first kind).
a(n) = Sum_{h+i+j+k+l+m=n, 0<=h,i,j,k,l,m<=n} multinomial(2n [h,h,i,i,j,j,k,k,l,l,m,m]). - Shel Kaphan, Jan 29 2023