A356258 Number of 6-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.
1, 12, 396, 19920, 1281420, 96807312, 8175770064, 748315668672, 72729762868620, 7402621930738320, 781429888276676496, 84955810313787521472, 9463540456205136873936, 1075903653146632508721600, 124461755084172965028753600, 14615050011682746903615601920
Offset: 0
Examples
a(1)=12, because twelve paths start at the origin, visit one of the adjacent vertices, and immediately return to the origin, resulting in 12 different paths of length 2n=2*1=2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..467
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, add(b(n-j, i-1)*binomial(n, j)^2, j=0..n)) end: a:= n-> (2*n)!*b(n, 6)/n!^2: seq(a(n), n=0..15); # Alois P. Heinz, Jan 30 2023
Formula
E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^6. (I = Modified Bessel function first kind).
a(n) = Sum_{h+i+j+k+l+m=n, 0<=h,i,j,k,l,m<=n} multinomial(2n [h,h,i,i,j,j,k,k,l,l,m,m]). - Shel Kaphan, Jan 29 2023