cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356298 a(n) = n! * Sum_{k=1..n} sigma_2(k)/k.

Original entry on oeis.org

1, 7, 41, 290, 2074, 18444, 165108, 1749264, 19412496, 241299360, 3097006560, 45546606720, 673536159360, 10986261431040, 187460277177600, 3445281394329600, 64637392771123200, 1325310849663897600, 27498565425087590400, 616389533324974080000
Offset: 1

Views

Author

Seiichi Manyama, Aug 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[DivisorSigma[2, k]/k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Aug 07 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sigma(k, 2)/k);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/(k*(1-x^k)^2))/(1-x)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, k*log(1-x^k))/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} x^k/(k * (1 - x^k)^2).
E.g.f.: -(1/(1-x)) * Sum_{k>0} k * log(1 - x^k).
a(n) ~ n! * zeta(3) * n^2 / 2. - Vaclav Kotesovec, Aug 07 2022