cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356361 a(n) = Sum_{k=0..floor(n/3)} n^k * |Stirling1(n,3*k)|.

Original entry on oeis.org

1, 0, 0, 3, 24, 175, 1386, 12397, 125664, 1431261, 18099300, 251194911, 3788383248, 61584927495, 1072118178768, 19882255276485, 391068812992512, 8128569896422821, 177984169080865992, 4094103029211918567, 98692513234032009600, 2487731188418039207007
Offset: 0

Views

Author

Seiichi Manyama, Oct 16 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, n^k*abs(stirling(n, 3*k, 1)));
    
  • PARI
    a(n) = n!*polcoef(sum(k=0, n\3, n^k*(-log(1-x+x*O(x^n)))^(3*k)/(3*k)!), n);
    
  • PARI
    Pochhammer(x, n) = prod(k=0, n-1, x+k);
    a(n) = my(v=n^(1/3), w=(-1+sqrt(3)*I)/2); round(Pochhammer(v, n)+Pochhammer(v*w, n)+Pochhammer(v*w^2, n))/3;

Formula

Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . a(n) = n! * [x^n] F(-n^(1/3) * log(1-x)).
a(n) = ( (n^(1/3))_n + (n^(1/3)*w)_n + (n^(1/3)*w^2)_n )/3, where (x)_n is the Pochhammer symbol.

A356363 a(n) = Sum_{k=0..floor(n/3)} n^k * Stirling2(n,3*k).

Original entry on oeis.org

1, 0, 0, 3, 24, 125, 576, 3136, 24752, 242280, 2421000, 23568743, 230156136, 2370756505, 26664718080, 326641069815, 4243004068192, 57065900282730, 787656999701016, 11193821784313606, 165023822310642520, 2535785869709189307, 40583218821499596176
Offset: 0

Views

Author

Seiichi Manyama, Oct 16 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, n^k*stirling(n, 3*k, 2));
    
  • PARI
    a(n) = n!*polcoef(sum(k=0, n\3, n^k*(exp(x+x*O(x^n))-1)^(3*k)/(3*k)!), n);
    
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(v=n^(1/3), w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, v)+Bell_poly(n, v*w)+Bell_poly(n, v*w^2))/3;

Formula

Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . a(n) = n! * [x^n] F(n^(1/3) * (exp(x)-1)).
a(n) = ( Bell_n(n^(1/3)) + Bell_n(n^(1/3)*w) + Bell_n(n^(1/3)*w^2) )/3, where Bell_n(x) is n-th Bell polynomial.
Showing 1-2 of 2 results.