cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356361 a(n) = Sum_{k=0..floor(n/3)} n^k * |Stirling1(n,3*k)|.

Original entry on oeis.org

1, 0, 0, 3, 24, 175, 1386, 12397, 125664, 1431261, 18099300, 251194911, 3788383248, 61584927495, 1072118178768, 19882255276485, 391068812992512, 8128569896422821, 177984169080865992, 4094103029211918567, 98692513234032009600, 2487731188418039207007
Offset: 0

Views

Author

Seiichi Manyama, Oct 16 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, n^k*abs(stirling(n, 3*k, 1)));
    
  • PARI
    a(n) = n!*polcoef(sum(k=0, n\3, n^k*(-log(1-x+x*O(x^n)))^(3*k)/(3*k)!), n);
    
  • PARI
    Pochhammer(x, n) = prod(k=0, n-1, x+k);
    a(n) = my(v=n^(1/3), w=(-1+sqrt(3)*I)/2); round(Pochhammer(v, n)+Pochhammer(v*w, n)+Pochhammer(v*w^2, n))/3;

Formula

Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . a(n) = n! * [x^n] F(-n^(1/3) * log(1-x)).
a(n) = ( (n^(1/3))_n + (n^(1/3)*w)_n + (n^(1/3)*w^2)_n )/3, where (x)_n is the Pochhammer symbol.

A356362 a(n) = Sum_{k=0..floor(n/3)} n^k * Stirling1(n,3*k).

Original entry on oeis.org

1, 0, 0, 3, -24, 175, -1314, 10339, -84448, 696429, -5444700, 32897601, 53444304, -8071238721, 235927045536, -5630771421765, 126525509087232, -2799633511755963, 62154971516786616, -1396560425289392007, 31880150704745078400, -740188445913015688953
Offset: 0

Views

Author

Seiichi Manyama, Oct 16 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, n^k*stirling(n, 3*k, 1));
    
  • PARI
    a(n) = n!*polcoef(sum(k=0, n\3, n^k*log(1+x+x*O(x^n))^(3*k)/(3*k)!), n);
    
  • PARI
    Pochhammer(x, n) = prod(k=0, n-1, x+k);
    a(n) = my(v=n^(1/3), w=(-1+sqrt(3)*I)/2); (-1)^n*round(Pochhammer(-v, n)+Pochhammer(-v*w, n)+Pochhammer(-v*w^2, n))/3;

Formula

Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . a(n) = n! * [x^n] F(n^(1/3) * log(1+x)).
a(n) = (-1)^n * ( (-n^(1/3))_n + (-n^(1/3)*w)_n + (-n^(1/3)*w^2)_n )/3, where (x)_n is the Pochhammer symbol.
Showing 1-2 of 2 results.