A322099 Number of permutations f of {1,...,n} with f(1) < f(n) and Sum_{k=1..n-1} 1/(f(k)^2 - f(k+1)^2) = 0.
0, 0, 0, 0, 0, 0, 0, 1, 4, 4, 55, 78, 552, 3484, 12720
Offset: 1
Examples
a(8) = 1, and for the permutation (4,5,2,7,3,1,6,8) of {1,...,8} we have 1/(4^2-5^2) + 1/(5^2-2^2) + 1/(2^2-7^2) + 1/(7^2-3^2) + 1/(3^2-1^2) + 1/(1^2-6^2) + 1/(6^2-8^2) = 0. a(12) > 0 since for the permutation (1,3,7,5,4,8,6,2,10,11,9,12) of {1,...,12} we have 1/(1^2-3^2) + 1/(3^2-7^2) + 1/(7^2-5^2) + 1/(5^2-4^2) + 1/(4^2-8^2) + 1/(8^2-6^2) + 1/(6^2-2^2) + 1/(2^2-10^2) + 1/(10^2-11^2) + 1/(11^2-9^2) + 1/(9^2-12^2) = 0. a(13) > 0 since for the permutation (1,6,2,9,11,5,3,7,13,8,4,10,12) of {1,...,13} we have 1/(1^2-6^2) + 1/(6^2-2^2) + 1/(2^2-9^2) + 1/(9^2-11^2) + 1/(11^2-5^2) + 1/(5^2-3^2) + 1/(3^2-7^2) + 1/(7^2-13^2) + 1/(13^2-8^2) + 1/(8^2-4^2) + 1/(4^2-10^2) + 1/(10^2-12^2) = 0.
Links
- Zhi-Wei Sun, On restricted permutations of {1,...,n}, arXiv:1811.10503 [math.CO], 2018.
- Zhi-Wei Sun, Is there a permutation pi in S_n with Sum_{k=1..n-1} 1/(pi(k)^2-pi(k+1)^2) = 0 for each n > 7?, Question 316208 on Mathoverflow, Nov. 25, 2018.
Programs
-
Mathematica
V[n_]:=V[n]=Permutations[Table[i,{i,1,n}]]; Do[r=0;Do[If[Part[V[n],k][[1]]>=Part[V[n],k][[n]]||Sum[1/(Part[V[n],k][[i]]^2-Part[V[n],k][[i+1]]^2),{i,1,n-1}]!=0,Goto[aa]];r=r+1;Label[aa],{k,1,n!}];Print[n," ",r],{n,1,11}]
-
PARI
a(n)={my(s=0); forperm(n, f, if(f[1]
Andrew Howroyd, Nov 27 2018
Extensions
a(12) from Andrew Howroyd, Nov 27 2018
a(13)-a(15) from Hugo Pfoertner, Aug 22 2022
Comments