cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356447 Integers k such that (k+1)*(2*k-1) does not divide the central binomial coefficient B(k) = binomial(2*k,k) = A000984(k).

Original entry on oeis.org

2, 5, 8, 11, 14, 26, 29, 32, 35, 38, 41, 80, 83, 86, 89, 92, 95, 107, 110, 113, 116, 119, 122, 242, 245, 248, 251, 254, 257, 269, 272, 275, 278, 281, 284, 323, 326, 329, 332, 335, 338, 350, 353, 356, 359, 362, 365, 728, 731, 734, 737, 740, 743, 755, 758, 761
Offset: 1

Views

Author

Valerio De Angelis, Aug 07 2022

Keywords

Comments

It is well known that B(k) divided by (k+1) is an integer (the Catalan numbers A000108). It is also easy to see that (2k-1) divides B(k). So we ask when the product (k+1)*(2k-1) divides B(k). The terms of this sequence are the positive integers k such that (k+1)*(2k-1) does not divide B(k).
A necessary and sufficient condition for an integer k to be a term of this sequence is: k is congruent to 2 (mod 3), and at least one of (k+1) or (k-1) has no 2's in its base-3 expansion. In particular, this sequence has density 0. This is proved in the Stack Exchange post cited below.
Other equivalent conditions are:
1) k is congruent to 2 (mod 3), and its base-3 expansion either has no 2's, or is of form u12, or u02^i for some i>=1, where u has no 2's and 2^i means a string of i consecutive 2's.
2) the base 3 expansion of k+1 is either u0 or u20, where u has no 2's.

Examples

			k = 95 is a term, since it is k == 2 (mod 3) and k-1 = 94 has base-3 expansion 10111 which has no digit 2's. It can be checked that B(k) = binomial(190,95) is not divisible by (k+1)*(2*k-1) = 18144.
As another example, a(18)=107, also congruent to 2 (mod 3), and 107+1=108 has base-3 expansion 11000. It can be checked that binomial(2*107,107) is not divisible by (107+1)*(2*107-1).
125 is not a term of the sequence, because even though it's congruent to 2 (mod 3), the base-3 expansions of 125+1=126 and 125-1=124 are 11200 and 11121. It can be checked that binomial(2*125,125) is divisible by (125+1)*(2*125-1).
		

Crossrefs

Programs

  • Mathematica
    kmax=762; a={}; For[k=1, k<=kmax, k++, If[Not[Divisible[Binomial[2k, k], (k+1)(2k-1)]], AppendTo[a, k]]]; a (* Stefano Spezia, Aug 12 2022 *)
  • PARI
    isok(k) = Mod(binomial(2*k,k), (k+1)*(2*k-1)) != 0; \\ Michel Marcus, Aug 10 2022
    
  • Python
    def A356447(n):
        a, b = divmod(n,3)
        return (int(bin(a)[2:],3)*3+b)*3-1 # Chai Wah Wu, Jul 29 2025

Formula

a(n) = 3*A096304(n) - 1.