cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356472 Numerator of the average of gcd(i,n) for i = 1..n.

Original entry on oeis.org

1, 3, 5, 2, 9, 5, 13, 5, 7, 27, 21, 10, 25, 39, 3, 3, 33, 7, 37, 18, 65, 63, 45, 25, 13, 75, 3, 26, 57, 9, 61, 7, 35, 99, 117, 14, 73, 111, 125, 9, 81, 65, 85, 42, 21, 135, 93, 5, 19, 39, 55, 50, 105, 9, 189, 65, 185, 171, 117, 6, 121, 183, 13, 4, 45, 105, 133, 66, 75, 351, 141, 35, 145, 219, 13, 74, 39, 125, 157
Offset: 1

Views

Author

Matthias Kaak, Aug 08 2022

Keywords

Examples

			For n = 3, the average of the gcd's is (gcd(1,3) + gcd(2,3) + gcd(3,3))/3 = (1 + 1 + 3)/3 = 5/3 and its numerator is a(3)=5.
		

Crossrefs

Cf. A356473 (denominators), A018804, A057661 (LCM).

Programs

  • Haskell
    map numerator (map (\i -> sum (map (\j -> gcd i j) [1..i]) % i) [1..])
    
  • Mathematica
    Table[Numerator[Sum[GCD[I, j], {j, 1, I}]/I], {I, 100}]
    f[p_, e_] := e*(p - 1)/p + 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = numerator(sum(i=1, n, gcd(i, n))/n); \\ Michel Marcus, Aug 08 2022
    
  • PARI
    a(n,f=factor(n))=my(k=prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2])); k/gcd(k,n) \\ Charles R Greathouse IV, Sep 08 2022
    
  • Python
    from math import prod, gcd
    from sympy import factorint
    def A356472(n):
        f = factorint(n)
        return (m:=prod((p-1)*e+p for p, e in f.items()))//gcd(prod(f),m) # Chai Wah Wu, Sep 08 2022

Formula

a(n) = numerator(A018804(n)/n).
a(n) << n^(1+e) for any e > 0. a(n) > 1 for all n > 1. - Charles R Greathouse IV, Sep 08 2022
Sum_{k=1..n} a(k)/A356473(k) ~ (n/zeta(2)) * (log(n) + 2*gamma - 1 - zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2024