cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Matthias Kaak

Matthias Kaak's wiki page.

Matthias Kaak has authored 2 sequences.

A356473 Denominator of the average of gcd(i,n) for i = 1..n.

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 2, 3, 10, 11, 3, 13, 14, 1, 1, 17, 2, 19, 5, 21, 22, 23, 6, 5, 26, 1, 7, 29, 2, 31, 2, 11, 34, 35, 3, 37, 38, 39, 2, 41, 14, 43, 11, 5, 46, 47, 1, 7, 10, 17, 13, 53, 2, 55, 14, 57, 58, 59, 1, 61, 62, 3, 1, 13, 22, 67, 17, 23, 70, 71, 6, 73, 74, 3, 19, 11, 26, 79, 5, 3, 82, 83, 21, 85, 86, 29
Offset: 1

Author

Matthias Kaak, Aug 08 2022

Keywords

Comments

From Robert Israel, Dec 29 2022: (Start)
If n is prime, a(n) = n.
If n is an odd prime, a(n^2) = n.
If p and q are distinct primes with p | 2*q-1, then a(p*q) = q, except in the case of 3*5, where both 3 | 2*5-1 and 5 | 2*3-1, and a(3*5) = 1.
For semiprimes p*q where p <> q, p does not divide 2*q-1 and q does not divide 2*p-1, a(p*q) = p*q. (End)

Examples

			For n = 3, the average of the gcd's is (gcd(1,3) + gcd(2,3) + gcd(3,3))/3 = (1 + 1 + 3)/3 = 5/3 which has denominator a(3)=3.
		

Crossrefs

Cf. A356472 (numerators), A018804.

Programs

  • Haskell
    map denominator (map (\i -> sum (map (\j -> gcd i j) [1..i]) % i) [1..])
    
  • Maple
    f:= proc(n) local i;  denom(add(igcd(i,n),i=1..n)/n) end proc:
    map(f, [$1..100]); # Robert Israel, Dec 29 2022
  • Mathematica
    Table[Denominator[Sum[GCD[I, j], {j, 1, I}]/I], {I, 100}]
    f[p_, e_] := e*(p - 1)/p + 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = denominator(sum(i=1, n, gcd(i, n))/n); \\ Michel Marcus, Aug 08 2022
    
  • PARI
    a(n,f=factor(n))=n/gcd(prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2]),n) \\ Charles R Greathouse IV, Sep 08 2022
    
  • Python
    from math import gcd, prod
    from sympy import factorint
    def A356473(n): return (p:=prod(f:=factorint(n)))//gcd(p,prod((p-1)*e+p for p, e in f.items())) # Chai Wah Wu, Sep 08 2022

Formula

a(n) = denominator of A018804(n)/n.
a(n) divides n, so in particular a(n) <= n. - Charles R Greathouse IV, Sep 08 2022

A356472 Numerator of the average of gcd(i,n) for i = 1..n.

Original entry on oeis.org

1, 3, 5, 2, 9, 5, 13, 5, 7, 27, 21, 10, 25, 39, 3, 3, 33, 7, 37, 18, 65, 63, 45, 25, 13, 75, 3, 26, 57, 9, 61, 7, 35, 99, 117, 14, 73, 111, 125, 9, 81, 65, 85, 42, 21, 135, 93, 5, 19, 39, 55, 50, 105, 9, 189, 65, 185, 171, 117, 6, 121, 183, 13, 4, 45, 105, 133, 66, 75, 351, 141, 35, 145, 219, 13, 74, 39, 125, 157
Offset: 1

Author

Matthias Kaak, Aug 08 2022

Keywords

Examples

			For n = 3, the average of the gcd's is (gcd(1,3) + gcd(2,3) + gcd(3,3))/3 = (1 + 1 + 3)/3 = 5/3 and its numerator is a(3)=5.
		

Crossrefs

Cf. A356473 (denominators), A018804, A057661 (LCM).

Programs

  • Haskell
    map numerator (map (\i -> sum (map (\j -> gcd i j) [1..i]) % i) [1..])
    
  • Mathematica
    Table[Numerator[Sum[GCD[I, j], {j, 1, I}]/I], {I, 100}]
    f[p_, e_] := e*(p - 1)/p + 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = numerator(sum(i=1, n, gcd(i, n))/n); \\ Michel Marcus, Aug 08 2022
    
  • PARI
    a(n,f=factor(n))=my(k=prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2])); k/gcd(k,n) \\ Charles R Greathouse IV, Sep 08 2022
    
  • Python
    from math import prod, gcd
    from sympy import factorint
    def A356472(n):
        f = factorint(n)
        return (m:=prod((p-1)*e+p for p, e in f.items()))//gcd(prod(f),m) # Chai Wah Wu, Sep 08 2022

Formula

a(n) = numerator(A018804(n)/n).
a(n) << n^(1+e) for any e > 0. a(n) > 1 for all n > 1. - Charles R Greathouse IV, Sep 08 2022
Sum_{k=1..n} a(k)/A356473(k) ~ (n/zeta(2)) * (log(n) + 2*gamma - 1 - zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2024