A356491 a(n) is the permanent of a symmetric Toeplitz matrix M(n) whose first row consists of prime(1), prime(2), ..., prime(n).
1, 2, 13, 184, 4745, 215442, 14998965, 1522204560, 208682406913, 37467772675962, 8809394996942597, 2597094620811897948, 954601857873086235553, 428809643170145564168434, 229499307540038336275308821, 144367721963876506217872778284, 106064861375232790889279725340713
Offset: 0
Keywords
Examples
For n = 1 the matrix M(1) is 2 with permanent a(1) = 2. For n = 2 the matrix M(2) is 2, 3 3, 2 with permanent a(2) = 13. For n = 3 the matrix M(3) is 2, 3, 5 3, 2, 3 5, 3, 2 with permanent a(3) = 184.
Links
- Mathematics Stack Exchange, Determinant of a Toeplitz matrix
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Maple
A356491 := proc(n) local c ; if n =0 then return 1 ; end if; LinearAlgebra[ToeplitzMatrix]([seq(ithprime(c),c=1..n)],n,symmetric) ; LinearAlgebra[Permanent](%) ; end proc: seq(A356491(n),n=0..15) ; # R. J. Mathar, Jan 31 2023
-
Mathematica
k[i_]:=Prime[i]; M[ n_]:=ToeplitzMatrix[Array[k, n]]; a[n_]:=Permanent[M[n]]; Join[{1},Table[a[n],{n,16}]]
-
PARI
a(n) = matpermanent(apply(prime, matrix(n,n,i,j,abs(i-j)+1))); \\ Michel Marcus, Aug 12 2022
-
Python
from sympy import Matrix, prime def A356491(n): return Matrix(n,n,[prime(abs(i-j)+1) for i in range(n) for j in range(n)]).per() if n else 1 # Chai Wah Wu, Aug 12 2022
Comments