A356492 a(n) is the determinant of a symmetric Toeplitz matrix M(n) whose first row consists of prime(n), prime(n-1), ..., prime(1).
1, 2, 5, 51, 264, 19532, -11904, 1261296, -2052864, 70621632, 24618221568, 3996020736, 743171562496, 24567175118848, -1257930752000, 864893030400, 12289833785344000, 1099483729459478528, 100515455071223808, 757166323365314560, 6294658173770137600, 7801939905505132544
Offset: 0
Keywords
Examples
For n = 1 the matrix M(1) is 2 with determinant a(1) = 2. For n = 2 the matrix M(2) is 3, 2 2, 3 with determinant a(2) = 5. For n = 3 the matrix M(3) is 5, 3, 2 3, 5, 3 2, 3, 5 with determinant a(3) = 51.
Links
- Robert Israel, Table of n, a(n) for n = 0..532
- Mathematics Stack Exchange, Determinant of a Toeplitz matrix
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Maple
f:=proc(n) uses LinearAlgebra; local i; Determinant(ToeplitzMatrix([seq(ithprime(i),i=n..1,-1)],symmetric)); end proc: q(0):= 1: map(q, [$0..25]); # Robert Israel, Oct 13 2023
-
Mathematica
k[i_]:=Prime[i]; M[ n_]:=ToeplitzMatrix[Reverse[Array[k, n]]]; a[n_]:=Det[M[n]]; Join[{1},Table[a[n],{n,21}]]
-
PARI
a(n) = matdet(apply(prime, matrix(n,n,i,j,n-abs(i-j)))); \\ Michel Marcus, Aug 12 2022
Comments