A356493 a(n) is the permanent of a symmetric Toeplitz matrix M(n) whose first row consists of prime(n), prime(n-1), ..., prime(1).
1, 2, 13, 271, 12030, 1346758, 214022024, 51763672608, 16088934953136, 6611717516842608, 4412314619046451200, 3533754988232088933120, 3506189715435673999194112, 4444138735439968822425464576, 5893766827264238066914528545792, 8502284313901016361834901076874240, 15350799440394462109333953415858960384
Offset: 0
Keywords
Examples
For n = 1 the matrix M(1) is 2 with permanent a(1) = 2. For n = 2 the matrix M(2) is 3, 2 2, 3 with permanent a(2) = 13. For n = 3 the matrix M(3) is 5, 3, 2 3, 5, 3 2, 3, 5 with permanent a(3) = 271.
Links
- Mathematics Stack Exchange, Determinant of a Toeplitz matrix
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Mathematica
k[i_]:=Prime[i]; M[ n_]:=ToeplitzMatrix[Reverse[Array[k, n]]]; a[n_]:=Permanent[M[n]]; PrimeQ[Join[{1},Table[a[n],{n,16}]]]
-
PARI
a(n) = matpermanent(apply(prime, matrix(n,n,i,j,n-abs(i-j)))); \\ Michel Marcus, Aug 12 2022
Comments