cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356544 Number of strict closure operators on a set of n elements such that all pairs of nonempty disjoint closed sets can be separated by clopen sets.

Original entry on oeis.org

0, 1, 4, 35, 857, 84230, 70711467
Offset: 0

Views

Author

Tian Vlasic, Aug 11 2022

Keywords

Comments

A closure operator is strict if the empty set is closed.
Two nonempty disjoint subsets A and B of X are separated by a set H if A is a subset of H and B is a subset of X\H.
Also the number of S_4 (Kakutani separation property) convexities on a set of n elements in the sense of Chepoi.

Examples

			The a(3) = 35 set-systems of closed sets:
{{}, {1, 2, 3}}
{{}, {1}, {1, 2, 3}}
{{}, {2}, {1, 2, 3}}
{{}, {3}, {1, 2, 3}}
{{}, {1, 2}, {1, 2, 3}}
{{}, {1, 3}, {1, 2, 3}}
{{}, {2, 3}, {1, 2, 3}}
{{}, {1}, {1, 2}, {1, 2, 3}}
{{}, {1}, {1, 3}, {1, 2, 3}}
{{}, {1}, {2, 3}, {1, 2, 3}}
{{}, {2}, {1, 2}, {1, 2, 3}}
{{}, {2}, {1, 3}, {1, 2, 3}}
{{}, {2}, {2, 3}, {1, 2, 3}}
{{}, {3}, {1, 2}, {1, 2, 3}}
{{}, {3}, {1, 3}, {1, 2, 3}}
{{}, {3}, {2, 3}, {1, 2, 3}}
{{}, {1}, {2}, {1, 3}, {1, 2, 3}}
{{}, {1}, {2}, {2, 3}, {1, 2, 3}}
{{}, {1}, {3}, {1, 2}, {1, 2, 3}}
{{}, {1}, {3}, {2, 3}, {1, 2, 3}}
{{}, {1}, {1, 2}, {1, 3}, {1, 2, 3}}
{{}, {2}, {3}, {1, 2}, {1, 2, 3}}
{{}, {2}, {3}, {1, 3}, {1, 2, 3}}
{{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}
{{}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
{{}, {1}, {2}, {1, 2}, {1, 3}, {1, 2, 3}}
{{}, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}
{{}, {1}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}
{{}, {1}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
{{}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}
{{}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}
{{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}
{{}, {1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
		

References

  • G. M. Bergman. Lattices, Closure Operators, and Galois Connections. Springer, Cham. 2015. 173-212.

Crossrefs

Programs

  • Mathematica
    SeparatedPairQ[A_][B_] := AnyTrue[A, And @@ MapThread[SubsetQ, {#, B}] &];
    Table[Length[With[{X = Range[n]},
    Select[Cases[Subsets@Subsets@X, {{}, _, X}],
       F |-> SubsetQ[F, Intersection @@@ Subsets[F, {2}]]
    && AllTrue[Select[Subsets[Drop[F, 1], {2}], Apply[DisjointQ]], SeparatedPairQ[Select[{#, Complement[X, #]} & /@ F, MemberQ[F, #[[2]]] &]]]]]], {n, 0, 4}]

Extensions

a(5)-a(6) from Christian Sievers, Jun 13 2024