A356549 a(n) is the number of divisors of 10^n whose first digit is 1.
1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 52, 60, 69, 78, 88, 99, 110, 122, 135, 148, 161, 175, 190, 205, 221, 238, 255, 273, 292, 311, 330, 350, 371, 392, 414, 437, 460, 484, 509, 534, 559, 585, 612, 639, 667, 696, 725, 755, 786, 817, 848, 880, 913, 946, 980, 1015, 1050, 1086
Offset: 0
Examples
The divisors of 1000 with initial digit 1 are: 1, 10, 100, 125 and 1000, so a(3)=5.
Links
- Michel Marcus, Table of n, a(n) for n = 0..500
Programs
-
Maple
a:= n-> add(`if`((""||d)[1]="1", 1, 0), d=numtheory[divisors](10^n)): seq(a(n), n=0..60); # Alois P. Heinz, Sep 23 2022
-
Mathematica
a[n_] := DivisorSum[10^n, 1 &, IntegerDigits[#][[1]] == 1 &]; Array[a, 60, 0] (* Amiram Eldar, Sep 23 2022 *)
-
PARI
a(n) = sumdiv(10^n, d, digits(d)[1] == 1);
-
Python
from sympy import divisors def a(n): return sum(1 for d in divisors(10**n, generator=True) if str(d)[0]=="1") print([a(n) for n in range(60)]) # Michael S. Branicky, Sep 23 2022
-
Python
def A356549(n): return n+1+sum(n-m+1 for m in range(1,n+2) for d in (2,5) if str(d**m).startswith('1')) # Chai Wah Wu, Sep 23 2022