cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356549 a(n) is the number of divisors of 10^n whose first digit is 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 52, 60, 69, 78, 88, 99, 110, 122, 135, 148, 161, 175, 190, 205, 221, 238, 255, 273, 292, 311, 330, 350, 371, 392, 414, 437, 460, 484, 509, 534, 559, 585, 612, 639, 667, 696, 725, 755, 786, 817, 848, 880, 913, 946, 980, 1015, 1050, 1086
Offset: 0

Views

Author

Michel Marcus, Sep 23 2022

Keywords

Examples

			The divisors of 1000 with initial digit 1 are: 1, 10, 100, 125 and 1000, so a(3)=5.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`((""||d)[1]="1", 1, 0), d=numtheory[divisors](10^n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 23 2022
  • Mathematica
    a[n_] := DivisorSum[10^n, 1 &, IntegerDigits[#][[1]] == 1 &]; Array[a, 60, 0] (* Amiram Eldar, Sep 23 2022 *)
  • PARI
    a(n) = sumdiv(10^n, d, digits(d)[1] == 1);
    
  • Python
    from sympy import divisors
    def a(n): return sum(1 for d in divisors(10**n, generator=True) if str(d)[0]=="1")
    print([a(n) for n in range(60)]) # Michael S. Branicky, Sep 23 2022
    
  • Python
    def A356549(n): return n+1+sum(n-m+1 for m in range(1,n+2) for d in (2,5) if str(d**m).startswith('1')) # Chai Wah Wu, Sep 23 2022

Formula

a(n) = A357299(A011557(n)).