A356659 Numbers k that can be written as the sum of 9 divisors of k (not necessarily distinct).
9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 125
Offset: 1
Keywords
Examples
14 is in the sequence since 14 = 2+2+2+2+2+1+1+1+1, where each summand divides 14.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
upto(n) = { my(v = vector(n,i,-1), t = 0); for(i = 1, n, if(v[i] == -1, print1(i", "); v[i] = is(i, 9); if(v[i] == 1, for(j = 2, n \ i, v[i*j] = 1; ) ) ); ); select(x->x >= 1, v, 1); } is(n, {qd = 10}) = { my(d = divisors(n)); d = d[^#d]; forvec(x = vector(qd-1, i, [1, #d]), s = sum(i = 1, qd-1, d[x[i]]); if(n - s >= d[x[qd - 1]], if(n % (n - s) == 0, return(1); ) ) , 1 ); 0 } \\ David A. Corneth, Oct 08 2022
Formula
a(n + t) = a(n) + s for some finite t and s. - David A. Corneth, Oct 08 2022
Comments