A356666 Smallest m such that the m-th Lucas number has exactly n divisors that are also Lucas numbers.
1, 0, 3, 6, 15, 30, 45, 90, 105, 210, 405, 810, 315, 630, 3645, 2025, 945, 1890, 1575, 3150, 2835, 5670, 36450, 25025, 3465, 6930, 101250, 11025, 22050, 51030, 14175, 28350, 10395, 20790, 2952450, 175175, 17325, 34650, 1937102445, 625625, 31185, 62370, 127575, 255150
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..382
Programs
-
PARI
L(n)=fibonacci(n+1)+fibonacci(n-1); \\ A000032 isld(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); }; \\ A102460 nbld(n) = sumdiv(n, d, isld(d)); \\ A304092 a(n) = my(k=0); while(nbld(L(k)) != n, k++); k;
-
PARI
countLd(n) = my(c=0,x=2,y=1); while(x<=n, if(n%x==0, c++); [x,y]=[y,x+y]); c; a(n) = if(n==1, return(1)); my(k=0,x=2,y=1); while(1, if(countLd(x) == n, return(k)); [x,y,k]=[y,x+y,k+1]); \\ Daniel Suteu, Aug 24 2022
Extensions
a(12)-a(26) from Daniel Suteu, Aug 24 2022
More terms from Daniel Suteu and David A. Corneth, Sep 04 2022
Comments