A356751 Positive integers m such that x^2 - x + m contains more than m/2 prime numbers for x = 1, 2, ..., m.
3, 5, 7, 11, 17, 41, 47, 59, 67, 101, 107, 161, 221, 227, 347, 377
Offset: 1
Examples
7 is a term since x^2 - x + 7 is prime for x = 1, 3, 4, and 6, which is 4 values of x, and 4 > 7/2.
Links
- S. A. Goudsmit, Unusual Prime Number Sequences, Nature Vol. 214 (1967), 1164.
- Brady Haran and Matt Parker, Caboose Numbers, Youtube video, June 2024.
Crossrefs
Programs
-
Mathematica
q[k_] := Count[Range[k], ?(PrimeQ[#^2 - # + k] &)] > k/2; Select[Range[400], q] (* _Amiram Eldar, Aug 26 2022 *)
-
PARI
isok(m) = sum(k=1, m, isprime(k^2 - k + m)) > m/2; \\ Michel Marcus, Aug 26 2022
-
Python
from sympy import isprime def ok(m): return 2*sum(1 for x in range(1, m+1) if isprime(x**2-x+m)) > m print([m for m in range(1, 400) if ok(m)]) # Michael S. Branicky, Aug 26 2022
Comments