A356766 Least number k such that k and k+2 both have exactly 2n divisors, or -1 if no such number exists.
3, 6, 18, 40, 127251, 198, 26890623, 918, 17298, 6640, 25269208984375, 3400, 3900566650390623, 640062, 8418573, 18088, 1164385682220458984373, 41650, 69528379848480224609373, 128464, 34084859373, 12164094, 150509919493198394775390625, 90270, 418514293125, 64505245696
Offset: 1
Keywords
Examples
For n=1, numdiv(3) = numdiv(5) = 2 = 2*1, and no number < 3 satisfies this, hence a(1) = 3.
Crossrefs
Programs
-
Mathematica
a={}; n=1; nmax=10; For[k=1, n<=nmax, k++, If[DivisorSigma[0, k] == DivisorSigma[0, k+2] == 2n, AppendTo[a, k]; k=1; n++]]; a (* Stefano Spezia, Aug 26 2022 *) Flatten[Table[SequencePosition[DivisorSigma[0,Range[27*10^6]],{2n,,2n},1],{n,10}],1][[;;,1]] (* The program generates the first 10 terms of the sequence. To generate more, increase the Range constant but the program will take a long time to run. *) (* _Harvey P. Dale, Jul 01 2023 *)
-
PARI
a(n)=for(k=1,+oo,if(numdiv(k)==2*n&&numdiv(k+2)==2*n,return(k)))
Extensions
More terms from Jinyuan Wang, Aug 28 2022