cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A356806 a(n) = Sum_{k=0..n} (k*n-1)^(n-k) * binomial(n,k).

Original entry on oeis.org

1, 0, 4, 27, 448, 10625, 344736, 14437213, 753991680, 47974773393, 3650824000000, 326917384798301, 33956137832546304, 4041303651931462969, 545552768347831566336, 82828479894303251953125, 14040577418634835164921856, 2640293357854435329683551265
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k*n-1)^(n-k)*binomial(n, k));
    
  • PARI
    a(n) = n!*sum(k=0, n\2, n^(n-k)*stirling(n-k, k, 2)/(n-k)!);

Formula

a(n) = n! * [x^n] exp( x * (exp(n * x) - 1) ).
a(n) = n! * Sum_{k=0..floor(n/2)} n^(n-k) * Stirling2(n-k,k)/(n-k)!.
a(n) = [x^n] Sum_{k>=0} x^k / (1 - (n*k-1)*x)^(k+1).

A356811 a(n) = Sum_{k=0..n} (k*n+1)^(n-k) * binomial(n,k).

Original entry on oeis.org

1, 2, 8, 71, 1040, 22457, 676000, 26861977, 1347932416, 82873789793, 6114540967424, 532596023373713, 53990083205042176, 6289985311473281329, 833180470332123750400, 124356049859476364116193, 20754548375601491155681280, 3847574240184742568296430273
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k*n+1)^(n-k)*binomial(n, k));

Formula

a(n) = n! * [x^n] exp( x * (exp(n * x) + 1) ).
a(n) = [x^n] Sum_{k>=0} x^k / (1 - (n*k+1)*x)^(k+1).

A356817 a(n) = Sum_{k=0..n} (-1)^k * (k*n-1)^(n-k) * binomial(n,k).

Original entry on oeis.org

1, -2, 0, 1, 144, 4143, 110368, 2535475, 13299968, -5169863825, -639341093376, -59073970497885, -4677854594527232, -276406098219258425, 2399871442122924032, 5163244810691492730907, 1331213942683118587674624, 262517264591996332314037215
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*(k*n-1)^(n-k)*binomial(n, k));

Formula

a(n) = n! * [x^n] exp( -x * (exp(n * x) + 1) ).
a(n) = [x^n] Sum_{k>=0} (-x)^k / (1 - (n*k-1)*x)^(k+1).
Showing 1-3 of 3 results.